CalliGAN: Style and Structure-aware Chinese Calligraphy Character
Generator
- URL: http://arxiv.org/abs/2005.12500v1
- Date: Tue, 26 May 2020 03:15:03 GMT
- Title: CalliGAN: Style and Structure-aware Chinese Calligraphy Character
Generator
- Authors: Shan-Jean Wu, Chih-Yuan Yang and Jane Yung-jen Hsu
- Abstract summary: Chinese calligraphy is the writing of Chinese characters as an art form performed with brushes.
Recent studies show that Chinese characters can be generated through image-to-image translation for multiple styles using a single model.
We propose a novel method of this approach by incorporating Chinese characters' component information into its model.
- Score: 6.440233787863018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chinese calligraphy is the writing of Chinese characters as an art form
performed with brushes so Chinese characters are rich of shapes and details.
Recent studies show that Chinese characters can be generated through
image-to-image translation for multiple styles using a single model. We propose
a novel method of this approach by incorporating Chinese characters' component
information into its model. We also propose an improved network to convert
characters to their embedding space. Experiments show that the proposed method
generates high-quality Chinese calligraphy characters over state-of-the-art
methods measured through numerical evaluations and human subject studies.
Related papers
- MetaScript: Few-Shot Handwritten Chinese Content Generation via
Generative Adversarial Networks [15.037121719502606]
We propose MetaScript, a novel content generation system designed to address the diminishing presence of personal handwriting styles in the digital representation of Chinese characters.
Our approach harnesses the power of few-shot learning to generate Chinese characters that retain the individual's unique handwriting style and maintain the efficiency of digital typing.
arXiv Detail & Related papers (2023-12-25T17:31:19Z) - Chinese Text Recognition with A Pre-Trained CLIP-Like Model Through
Image-IDS Aligning [61.34060587461462]
We propose a two-stage framework for Chinese Text Recognition (CTR)
We pre-train a CLIP-like model through aligning printed character images and Ideographic Description Sequences (IDS)
This pre-training stage simulates humans recognizing Chinese characters and obtains the canonical representation of each character.
The learned representations are employed to supervise the CTR model, such that traditional single-character recognition can be improved to text-line recognition.
arXiv Detail & Related papers (2023-09-03T05:33:16Z) - VQ-Font: Few-Shot Font Generation with Structure-Aware Enhancement and
Quantization [52.870638830417]
We propose a VQGAN-based framework (i.e., VQ-Font) to enhance glyph fidelity through token prior refinement and structure-aware enhancement.
Specifically, we pre-train a VQGAN to encapsulate font token prior within a codebook. Subsequently, VQ-Font refines the synthesized glyphs with the codebook to eliminate the domain gap between synthesized and real-world strokes.
arXiv Detail & Related papers (2023-08-27T06:32:20Z) - Calliffusion: Chinese Calligraphy Generation and Style Transfer with
Diffusion Modeling [1.856334276134661]
We propose Calliffusion, a system for generating high-quality Chinese calligraphy using diffusion models.
Our model architecture is based on DDPM (Denoising Diffusion Probabilistic Models)
arXiv Detail & Related papers (2023-05-30T15:34:45Z) - Shuo Wen Jie Zi: Rethinking Dictionaries and Glyphs for Chinese Language
Pre-training [50.100992353488174]
We introduce CDBERT, a new learning paradigm that enhances the semantics understanding ability of the Chinese PLMs with dictionary knowledge and structure of Chinese characters.
We name the two core modules of CDBERT as Shuowen and Jiezi, where Shuowen refers to the process of retrieving the most appropriate meaning from Chinese dictionaries.
Our paradigm demonstrates consistent improvements on previous Chinese PLMs across all tasks.
arXiv Detail & Related papers (2023-05-30T05:48:36Z) - Stroke-Based Autoencoders: Self-Supervised Learners for Efficient
Zero-Shot Chinese Character Recognition [4.64065792373245]
We develop a stroke-based autoencoder to model the sophisticated morphology of Chinese characters.
Our SAE architecture outperforms other existing methods in zero-shot recognition.
arXiv Detail & Related papers (2022-07-17T14:39:10Z) - ZiGAN: Fine-grained Chinese Calligraphy Font Generation via a Few-shot
Style Transfer Approach [7.318027179922774]
ZiGAN is a powerful end-to-end Chinese calligraphy font generation framework.
It does not require any manual operation or redundant preprocessing to generate fine-grained target-style characters.
Our method has a state-of-the-art generalization ability in few-shot Chinese character style transfer.
arXiv Detail & Related papers (2021-08-08T09:50:20Z) - ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin
Information [32.70080326854314]
We propose ChineseBERT, which incorporates the glyph and pinyin information of Chinese characters into language model pretraining.
The proposed ChineseBERT model yields significant performance boost over baseline models with fewer training steps.
arXiv Detail & Related papers (2021-06-30T13:06:00Z) - SHUOWEN-JIEZI: Linguistically Informed Tokenizers For Chinese Language
Model Pretraining [48.880840711568425]
We study the influences of three main factors on the Chinese tokenization for pretrained language models.
We propose three kinds of tokenizers: SHUOWEN (meaning Talk Word), the pronunciation-based tokenizers; 2) JIEZI (meaning Solve Character), the glyph-based tokenizers.
We find that SHUOWEN and JIEZI tokenizers can generally outperform conventional single-character tokenizers.
arXiv Detail & Related papers (2021-06-01T11:20:02Z) - Generating Adversarial Examples in Chinese Texts Using Sentence-Pieces [60.58900627906269]
We propose a pre-train language model as the substitutes generator using sentence-pieces to craft adversarial examples in Chinese.
The substitutions in the generated adversarial examples are not characters or words but textit'pieces', which are more natural to Chinese readers.
arXiv Detail & Related papers (2020-12-29T14:28:07Z) - Generating Major Types of Chinese Classical Poetry in a Uniformed
Framework [88.57587722069239]
We propose a GPT-2 based framework for generating major types of Chinese classical poems.
Preliminary results show this enhanced model can generate Chinese classical poems of major types with high quality in both form and content.
arXiv Detail & Related papers (2020-03-13T14:16:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.