Zero-Shot Chinese Character Recognition with Hierarchical Multi-Granularity Image-Text Aligning
- URL: http://arxiv.org/abs/2505.24837v1
- Date: Fri, 30 May 2025 17:39:14 GMT
- Title: Zero-Shot Chinese Character Recognition with Hierarchical Multi-Granularity Image-Text Aligning
- Authors: Yinglian Zhu, Haiyang Yu, Qizao Wang, Wei Lu, Xiangyang Xue, Bin Li,
- Abstract summary: Chinese characters exhibit unique structures and compositional rules, allowing for the use of fine-grained semantic information in representation.<n>We propose a Hierarchical Multi-Granularity Image-Text Aligning (Hi-GITA) framework based on a contrastive paradigm.<n>Our proposed Hi-GITA outperforms existing zero-shot CCR methods.
- Score: 52.92837273570818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chinese Character Recognition (CCR) is a fundamental technology for intelligent document processing. Unlike Latin characters, Chinese characters exhibit unique spatial structures and compositional rules, allowing for the use of fine-grained semantic information in representation. However, existing approaches are usually based on auto-regressive as well as edit distance post-process and typically rely on a single-level character representation. In this paper, we propose a Hierarchical Multi-Granularity Image-Text Aligning (Hi-GITA) framework based on a contrastive paradigm. To leverage the abundant fine-grained semantic information of Chinese characters, we propose multi-granularity encoders on both image and text sides. Specifically, the Image Multi-Granularity Encoder extracts hierarchical image representations from character images, capturing semantic cues from localized strokes to holistic structures. The Text Multi-Granularity Encoder extracts stroke and radical sequence representations at different levels of granularity. To better capture the relationships between strokes and radicals, we introduce Multi-Granularity Fusion Modules on the image and text sides, respectively. Furthermore, to effectively bridge the two modalities, we further introduce a Fine-Grained Decoupled Image-Text Contrastive loss, which aligns image and text representations across multiple granularities. Extensive experiments demonstrate that our proposed Hi-GITA significantly outperforms existing zero-shot CCR methods. For instance, it brings about 20% accuracy improvement in handwritten character and radical zero-shot settings. Code and models will be released soon.
Related papers
- UniGlyph: Unified Segmentation-Conditioned Diffusion for Precise Visual Text Synthesis [38.658170067715965]
We propose a segmentation-guided framework that uses pixel-level visual text masks as unified conditional inputs.<n>Our approach achieves state-of-the-art performance on the AnyText benchmark.<n>We also introduce two new benchmarks: GlyphMM-benchmark for testing layout and glyph consistency in complex, and MiniText-benchmark for assessing generation quality in small-scale text regions.
arXiv Detail & Related papers (2025-07-01T17:42:19Z) - Exploring Fine-Grained Image-Text Alignment for Referring Remote Sensing Image Segmentation [27.13782704236074]
We propose a new referring remote sensing image segmentation method to fully exploit the visual and linguistic representations.<n>The proposed fine-grained image-text alignment module (FIAM) would simultaneously leverage the features of the input image and the corresponding texts.<n>We evaluate the effectiveness of the proposed method on two public referring remote sensing datasets including RefSegRS and RRSIS-D.
arXiv Detail & Related papers (2024-09-20T16:45:32Z) - Chinese Text Recognition with A Pre-Trained CLIP-Like Model Through
Image-IDS Aligning [61.34060587461462]
We propose a two-stage framework for Chinese Text Recognition (CTR)
We pre-train a CLIP-like model through aligning printed character images and Ideographic Description Sequences (IDS)
This pre-training stage simulates humans recognizing Chinese characters and obtains the canonical representation of each character.
The learned representations are employed to supervise the CTR model, such that traditional single-character recognition can be improved to text-line recognition.
arXiv Detail & Related papers (2023-09-03T05:33:16Z) - GlyphDraw: Seamlessly Rendering Text with Intricate Spatial Structures
in Text-to-Image Generation [18.396131717250793]
We introduce GlyphDraw, a general learning framework aiming to endow image generation models with the capacity to generate images coherently embedded with text for any specific language.
Our method not only produces accurate language characters as in prompts, but also seamlessly blends the generated text into the background.
arXiv Detail & Related papers (2023-03-31T08:06:33Z) - Unified Multi-Modal Latent Diffusion for Joint Subject and Text
Conditional Image Generation [63.061871048769596]
We present a novel Unified Multi-Modal Latent Diffusion (UMM-Diffusion) which takes joint texts and images containing specified subjects as input sequences.
To be more specific, both input texts and images are encoded into one unified multi-modal latent space.
Our method is able to generate high-quality images with complex semantics from both aspects of input texts and images.
arXiv Detail & Related papers (2023-03-16T13:50:20Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - Towards Open-World Text-Guided Face Image Generation and Manipulation [52.83401421019309]
We propose a unified framework for both face image generation and manipulation.
Our method supports open-world scenarios, including both image and text, without any re-training, fine-tuning, or post-processing.
arXiv Detail & Related papers (2021-04-18T16:56:07Z) - TediGAN: Text-Guided Diverse Face Image Generation and Manipulation [52.83401421019309]
TediGAN is a framework for multi-modal image generation and manipulation with textual descriptions.
StyleGAN inversion module maps real images to the latent space of a well-trained StyleGAN.
visual-linguistic similarity learns the text-image matching by mapping the image and text into a common embedding space.
instance-level optimization is for identity preservation in manipulation.
arXiv Detail & Related papers (2020-12-06T16:20:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.