論文の概要: Memory-Efficient Sampling for Minimax Distance Measures
- arxiv url: http://arxiv.org/abs/2005.12627v1
- Date: Tue, 26 May 2020 11:00:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 23:29:29.370797
- Title: Memory-Efficient Sampling for Minimax Distance Measures
- Title(参考訳): ミニマックス距離測定のためのメモリ効率サンプリング
- Authors: Fazeleh Sadat Hoseini, Morteza Haghir Chehreghani
- Abstract要約: 本稿では,メモリ要求を低減し,線形空間の複雑さを提供するため,効率的なサンプリング手法について検討する。
そこで本研究では,異なる領域の実世界のデータセット上での手法の評価を行い,その結果を分析した。
- 参考スコア(独自算出の注目度): 4.873362301533825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Minimax distance measure extracts the underlying patterns and manifolds in an
unsupervised manner. The existing methods require a quadratic memory with
respect to the number of objects. In this paper, we investigate efficient
sampling schemes in order to reduce the memory requirement and provide a linear
space complexity. In particular, we propose a novel sampling technique that
adapts well with Minimax distances. We evaluate the methods on real-world
datasets from different domains and analyze the results.
- Abstract(参考訳): ミニマックス距離測度は、下層のパターンと多様体を教師なしの方法で抽出する。
既存のメソッドはオブジェクトの数に関して二次メモリを必要とする。
本稿では,メモリ要求の削減と線形空間の複雑さを実現するため,効率的なサンプリング手法を検討する。
特に,ミニマックス距離によく適応する新しいサンプリング手法を提案する。
実世界の異なる領域のデータセットの手法を評価し,結果を解析する。
関連論文リスト
- Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
自己組織化マップ(SOM)におけるトポロジカルプロジェクションに基づく半教師付き学習手法を提案する。
提案手法は,まずラベル付きデータ上でSOMを訓練し,最小限のラベル付きデータポイントをキーベストマッチングユニット(BMU)に割り当てる。
提案した最小教師付きモデルが従来の回帰手法を大幅に上回ることを示す。
論文 参考訳(メタデータ) (2024-01-12T22:51:48Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
我々はtextttMEX というオンライン強化学習(オンラインRL)フレームワークを提案する。
textttMEXは、自動的に探索エクスプロイトのバランスをとりながら、見積もりと計画コンポーネントを統合する。
様々な MuJoCo 環境では,ベースラインを安定的なマージンで上回り,十分な報酬を得られる。
論文 参考訳(メタデータ) (2023-05-29T17:25:26Z) - Learning Large Scale Sparse Models [6.428186644949941]
サンプルの数や特徴次元が数百万から数十億にも達する大規模環境でスパースモデルを学習することを検討する。
ラッソのようなスパースモデルをオンライン的に学習し、ランダムに選択されたサンプルが1つだけ露呈してスパース勾配を更新することを提案する。
これにより、メモリコストはサンプルサイズに依存しず、1つのサンプルの勾配評価が効率的となる。
論文 参考訳(メタデータ) (2023-01-26T06:29:49Z) - Dynamic Ensemble Size Adjustment for Memory Constrained Mondrian Forest [0.0]
本稿では,メモリ制約下では,木に基づくアンサンブル分類器のサイズを増大させることで,その性能が悪化することを示す。
データストリーム上でメモリバウンドのモンドリアン林に最適なアンサンブルサイズが存在することを実験的に示す。
本手法は,安定なデータセットに対して,最適な大きさのモンドリアン林の性能の最大95%を達成できると結論付けた。
論文 参考訳(メタデータ) (2022-10-11T18:05:58Z) - SreaMRAK a Streaming Multi-Resolution Adaptive Kernel Algorithm [60.61943386819384]
既存のKRRの実装では、すべてのデータがメインメモリに格納される必要がある。
KRRのストリーミング版であるStreaMRAKを提案する。
本稿では,2つの合成問題と2重振り子の軌道予測について紹介する。
論文 参考訳(メタデータ) (2021-08-23T21:03:09Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
我々はRandLA-Netを紹介した。RandLA-Netは、大規模ポイントクラウドのポイントごとの意味を推論する、効率的で軽量なニューラルネットワークアーキテクチャである。
我々のアプローチの鍵は、より複雑な点選択アプローチではなく、ランダムな点サンプリングを使用することである。
我々のRandLA-Netは、既存のアプローチよりも最大200倍高速な1回のパスで100万ポイントを処理できます。
論文 参考訳(メタデータ) (2021-07-06T05:08:34Z) - Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and
Personalized Federated Learning [56.17603785248675]
モデルに依存しないメタラーニング (MAML) が人気のある研究分野となっている。
既存のMAMLアルゴリズムは、イテレーション毎にメタモデルを更新するためにいくつかのタスクとデータポイントをサンプリングすることで、エピソードのアイデアに依存している。
本稿では,MAMLのメモリベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-09T08:47:58Z) - Not Far Away, Not So Close: Sample Efficient Nearest Neighbour Data
Augmentation via MiniMax [7.680863481076596]
MiniMax-kNNは、効率的なデータ拡張戦略のサンプルである。
我々は、知識蒸留に基づく半教師付きアプローチを利用して、拡張データに基づいてモデルを訓練する。
論文 参考訳(メタデータ) (2021-05-28T06:32:32Z) - Sample Efficient Linear Meta-Learning by Alternating Minimization [74.40553081646995]
低次元部分空間と回帰器を交互に学習する簡易交互最小化法(MLLAM)について検討する。
定数部分空間次元に対して、MLLAMはタスクあたり$Omega(log d)$サンプルしか必要とせず、ほぼ最適推定誤差が得られることを示す。
MLLAMと同様の強力な統計的保証を保証する新しいタスクサブセット選択スキームを提案する。
論文 参考訳(メタデータ) (2021-05-18T06:46:48Z) - MongeNet: Efficient Sampler for Geometric Deep Learning [17.369783838267942]
MongeNetは高速かつ最適なトランスポートベースのサンプリングツールで、より優れた近似特性を備えたメッシュの正確な識別を可能にする。
本手法をユビキタスなランダムな一様サンプリングと比較し,近似誤差がほぼ半分であり,計算オーバーヘッドが非常に小さいことを示す。
論文 参考訳(メタデータ) (2021-04-29T17:59:01Z) - A Practical Index Structure Supporting Fr\'echet Proximity Queries Among
Trajectories [1.9335262420787858]
我々は、計算コストの高いメトリクスの下で、レンジと近隣クエリに$k$のスケーラブルなアプローチを提案する。
計量指標のクラスタリングに基づいて,軌跡数に線形な木構造を求める。
本研究では,多種多様な合成および実世界のデータセットに関する広範な実験により,本手法の有効性と有効性について分析する。
論文 参考訳(メタデータ) (2020-05-28T04:12:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。