論文の概要: CERT: Contrastive Self-supervised Learning for Language Understanding
- arxiv url: http://arxiv.org/abs/2005.12766v2
- Date: Thu, 18 Jun 2020 12:47:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 12:40:07.772178
- Title: CERT: Contrastive Self-supervised Learning for Language Understanding
- Title(参考訳): CERT:言語理解のためのコントラスト型自己教師型学習
- Authors: Hongchao Fang, Sicheng Wang, Meng Zhou, Jiayuan Ding, Pengtao Xie
- Abstract要約: 本稿では,トランスフォーマーからのコントラスト型自己教師型表現(CERT)を提案する。
CERTは、文レベルでのコントラッシブな自己教師型学習を用いて、言語表現モデルを事前訓練する。
そこでは,CERT が BERT を 7 タスクで上回り,BERT が 2 タスクで上回り,BERT が 2 タスクで上回り,BERT が 2 タスクで上回る性能である GLUE ベンチマークを用いて,CERT を 11 個の自然言語理解タスクで評価した。
- 参考スコア(独自算出の注目度): 20.17416958052909
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pretrained language models such as BERT, GPT have shown great effectiveness
in language understanding. The auxiliary predictive tasks in existing
pretraining approaches are mostly defined on tokens, thus may not be able to
capture sentence-level semantics very well. To address this issue, we propose
CERT: Contrastive self-supervised Encoder Representations from Transformers,
which pretrains language representation models using contrastive
self-supervised learning at the sentence level. CERT creates augmentations of
original sentences using back-translation. Then it finetunes a pretrained
language encoder (e.g., BERT) by predicting whether two augmented sentences
originate from the same sentence. CERT is simple to use and can be flexibly
plugged into any pretraining-finetuning NLP pipeline. We evaluate CERT on 11
natural language understanding tasks in the GLUE benchmark where CERT
outperforms BERT on 7 tasks, achieves the same performance as BERT on 2 tasks,
and performs worse than BERT on 2 tasks. On the averaged score of the 11 tasks,
CERT outperforms BERT. The data and code are available at
https://github.com/UCSD-AI4H/CERT
- Abstract(参考訳): BERTやGPTといった事前訓練された言語モデルは、言語理解において大きな効果を示している。
既存の事前学習アプローチにおける補助的な予測タスクは、主にトークンで定義されているため、文レベルのセマンティクスをうまく捉えられない可能性がある。
そこで本研究では,コントラスト的自己教師付き学習を用いて言語表現モデルを事前学習するトランスフォーマからのコントラスト的自己教師付きエンコーダ表現を提案する。
CERTはバック翻訳を用いて原文の増補を生成する。
そして、2つの拡張文が同じ文に由来するかどうかを予測することにより、事前訓練された言語エンコーダ(例えばBERT)を微調整する。
CERTは簡単に使用でき、任意のトレーニング済みのNLPパイプラインに柔軟にプラグインできる。
そこでは,CERT が BERT を 7 タスクで上回り,BERT が 2 タスクで上回り,BERT が 2 タスクで上回り,BERT が 2 タスクで上回る性能である GLUE ベンチマークを用いて,CERT を 11 個の自然言語理解タスクで評価した。
11タスクの平均スコアでは、CERTはBERTを上回っている。
データとコードはhttps://github.com/UCSD-AI4H/CERTで公開されている。
関連論文リスト
- Can BERT Refrain from Forgetting on Sequential Tasks? A Probing Study [68.75670223005716]
BERTのような事前学習型言語モデルでは,メモリリプレイが少なくても,逐次学習が可能であることが判明した。
実験の結果,BERT は従来学習したタスクに対して,極めて疎らなリプレイや,さらにはリプレイを行なわずに,長期間にわたって高品質な表現を生成できることが判明した。
論文 参考訳(メタデータ) (2023-03-02T09:03:43Z) - PERT: Pre-training BERT with Permuted Language Model [24.92527883997854]
PERT は Permuted Language Model (PerLM) で訓練された BERT のような自動エンコーディングモデルである
入力テキストのパーセンテージをパーミュレートし、トレーニングの目的は、元のトークンの位置を予測することである。
我々は中国語と英語のNLUベンチマークについて広範な実験を行った。
論文 参考訳(メタデータ) (2022-03-14T07:58:34Z) - PromptBERT: Improving BERT Sentence Embeddings with Prompts [95.45347849834765]
本稿では,トークン埋め込みのバイアスを低減し,元のBERT層をより効果的にするためのプロンプトベースの文埋め込み手法を提案する。
また,教師なし設定と教師なし設定とのパフォーマンスギャップを大幅に短縮するテンプレート認知技術により,教師なし学習の新たな目標を提案する。
我々の微調整手法は教師なし設定と教師なし設定の両方において最先端のSimCSEよりも優れている。
論文 参考訳(メタデータ) (2022-01-12T06:54:21Z) - ConSERT: A Contrastive Framework for Self-Supervised Sentence
Representation Transfer [19.643512923368743]
本稿では,自己監督型文表現伝達のためのコントラストフレームワークであるConSERTを提案する。
ラベルのないテキストを利用することで、ConSERTはBERT由来の文表現の崩壊問題を解消する。
STSデータセットの実験では、ConSERTは以前の最先端よりも8%の相対的な改善を達成している。
論文 参考訳(メタデータ) (2021-05-25T08:15:01Z) - Looking for Clues of Language in Multilingual BERT to Improve
Cross-lingual Generalization [56.87201892585477]
多言語BERT (m-BERT) には、言語情報と意味情報の両方が含まれている。
トークン埋め込みを操作することで多言語BERTの出力言語を制御する。
論文 参考訳(メタデータ) (2020-10-20T05:41:35Z) - Incorporating BERT into Parallel Sequence Decoding with Adapters [82.65608966202396]
本稿では,2種類のBERTモデルをエンコーダとデコーダとして取り出し,シンプルで軽量なアダプタモジュールを導入し,それらを微調整する。
我々は、ソース側およびターゲット側BERTモデルに含まれる情報を協調的に活用できるフレキシブルで効率的なモデルを得る。
我々のフレームワークは、BERTの双方向および条件独立性を考慮した、Mask-Predictという並列シーケンス復号アルゴリズムに基づいている。
論文 参考訳(メタデータ) (2020-10-13T03:25:15Z) - AMBERT: A Pre-trained Language Model with Multi-Grained Tokenization [13.082435183692393]
AMBERT(A Multi-fine BERT)と呼ばれる新しい事前学習型言語モデルを提案する。
英語では、AMBERTは単語の列(きめ細かいトークン)とフレーズの列(粗いトークン)をトークン化後の入力として扱う。
CLUE(英語版)、GLUE(英語版)、SQuAD(英語版)、RACE(英語版)など、中国語と英語のベンチマークデータセットで実験が行われた。
論文 参考訳(メタデータ) (2020-08-27T00:23:48Z) - Exploring Cross-sentence Contexts for Named Entity Recognition with BERT [1.4998865865537996]
本稿では, BERT モデルを用いた NER におけるクロス文情報の利用を5言語で検討する。
BERT入力に追加文の形でコンテキストを追加することで、テスト対象言語やモデル上でのNER性能が向上することがわかった。
そこで本稿では,文の様々な予測を組み合わせ,さらにNER性能を向上させるための簡単な手法であるCMV(Contextual Majority Voting)を提案する。
論文 参考訳(メタデータ) (2020-06-02T12:34:52Z) - Incorporating BERT into Neural Machine Translation [251.54280200353674]
本稿では,入力シーケンスの表現抽出にBERTを用いたBERT融合モデルを提案する。
我々は、教師付き(文レベルと文書レベルの翻訳を含む)、半教師なしおよび教師なしの機械翻訳の実験を行い、7つのベンチマークデータセットで最先端の結果を得る。
論文 参考訳(メタデータ) (2020-02-17T08:13:36Z) - BERT's output layer recognizes all hidden layers? Some Intriguing
Phenomena and a simple way to boost BERT [53.63288887672302]
変換器による双方向表現(BERT)は多くの自然言語処理(NLP)タスクで大きな成功を収めている。
その結果,BERTの各層を直接入力として取り込むことで,BERTの出力層が入力文を再構築できることが判明した。
本稿では,BERTの性能向上のための非常に単純な手法を提案する。
論文 参考訳(メタデータ) (2020-01-25T13:35:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。