論文の概要: Visual Interest Prediction with Attentive Multi-Task Transfer Learning
- arxiv url: http://arxiv.org/abs/2005.12770v2
- Date: Wed, 27 May 2020 10:05:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 23:57:17.005742
- Title: Visual Interest Prediction with Attentive Multi-Task Transfer Learning
- Title(参考訳): 注意型マルチタスク転送学習による視覚利子予測
- Authors: Deepanway Ghosal, Maheshkumar H. Kolekar
- Abstract要約: 本稿では,デジタル写真における視覚的興味と感情の次元を予測するために,トランスファー学習とアテンション機構に基づくニューラルネットワークモデルを提案する。
ベンチマークデータセット上での本モデルの評価は,現在の最先端システムよりも大幅に改善されている。
- 参考スコア(独自算出の注目度): 6.177155931162925
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Visual interest & affect prediction is a very interesting area of research in
the area of computer vision. In this paper, we propose a transfer learning and
attention mechanism based neural network model to predict visual interest &
affective dimensions in digital photos. Learning the multi-dimensional affects
is addressed through a multi-task learning framework. With various experiments
we show the effectiveness of the proposed approach. Evaluation of our model on
the benchmark dataset shows large improvement over current state-of-the-art
systems.
- Abstract(参考訳): 視覚的関心と影響予測は、コンピュータビジョンの領域における非常に興味深い研究分野である。
本稿では,デジタル写真における視覚的興味と感情の次元を予測するために,移動学習と注意機構に基づくニューラルネットワークモデルを提案する。
多次元的影響の学習は、マルチタスク学習フレームワークを通じて行われる。
様々な実験により,提案手法の有効性を示す。
ベンチマークデータセットにおけるモデルの評価は、現在の最先端システムを大きく改善しています。
関連論文リスト
- Masked Modeling for Self-supervised Representation Learning on Vision
and Beyond [69.64364187449773]
仮面モデリングは、トレーニング中に比例的にマスキングされる元のデータの一部を予測する、独特なアプローチとして現れてきた。
マスクモデリングにおけるテクニックの詳細については,多様なマスキング戦略,ターゲット回復,ネットワークアーキテクチャなどについて詳述する。
我々は、現在の手法の限界について議論し、マスクモデリング研究を進めるためのいくつかの道のりを指摘した。
論文 参考訳(メタデータ) (2023-12-31T12:03:21Z) - Foveation in the Era of Deep Learning [6.602118206533142]
本稿では,グラフ畳み込みネットワークを利用してフェーブ化された画像を処理する,エンドツーエンドで微分可能なアクティブ・ビジョン・アーキテクチャを提案する。
我々のモデルは、分類に関連する画像の領域に反復的に出席することを学ぶ。
我々のモデルは最先端のCNNと、同等のパラメータと与えられたピクセルや予算の視覚アーキテクチャより優れています。
論文 参考訳(メタデータ) (2023-12-03T16:48:09Z) - Efficient Large-Scale Visual Representation Learning And Evaluation [0.13192560874022083]
大規模なeコマースビジョンアプリケーションにおける課題を解説し、視覚表現を効果的に訓練し、評価し、提供する方法を強調する。
いくつかの下流タスクにおける視覚的表現を評価するアブレーション研究について述べる。
大規模なeコマースプラットフォーム上にデプロイされた機械学習システムの実運用におけるオンライン結果を含める。
論文 参考訳(メタデータ) (2023-05-22T18:25:03Z) - Task Formulation Matters When Learning Continually: A Case Study in
Visual Question Answering [58.82325933356066]
継続的な学習は、以前の知識を忘れずに、一連のタスクでモデルを漸進的にトレーニングすることを目的としている。
本稿では,視覚的質問応答において,異なる設定がパフォーマンスに与える影響について詳細に検討する。
論文 参考訳(メタデータ) (2022-09-30T19:12:58Z) - Peripheral Vision Transformer [52.55309200601883]
我々は生物学的にインスパイアされたアプローチを採用し、視覚認識のためのディープニューラルネットワークの周辺視覚をモデル化する。
本稿では,マルチヘッド自己アテンション層に周辺位置エンコーディングを組み込むことにより,トレーニングデータから視覚領域を様々な周辺領域に分割することをネットワークが学べるようにすることを提案する。
大規模画像Netデータセット上でPerViTと呼ばれる提案したネットワークを評価し,マシン知覚モデルの内部動作を体系的に検討した。
論文 参考訳(メタデータ) (2022-06-14T12:47:47Z) - An Interactive Visualization Tool for Understanding Active Learning [12.345164513513671]
本稿では,能動学習の学習過程を明らかにするための対話型可視化ツールを提案する。
このツールは、興味深いデータポイントのサンプルを選択し、異なるクエリ段階でそれらの予測値がどのように変化するかを確認し、アクティブな学習がいつどのように機能するかをよりよく理解することができる。
論文 参考訳(メタデータ) (2021-11-09T03:33:26Z) - PANet: Perspective-Aware Network with Dynamic Receptive Fields and
Self-Distilling Supervision for Crowd Counting [63.84828478688975]
本稿では,視点問題に対処するため,PANetと呼ばれる新しい視点認識手法を提案する。
対象物のサイズが視点効果によって1つの画像で大きく変化するという観測に基づいて,動的受容場(DRF)フレームワークを提案する。
このフレームワークは、入力画像に応じて拡張畳み込みパラメータによって受容野を調整することができ、モデルが各局所領域についてより識別的な特徴を抽出するのに役立つ。
論文 参考訳(メタデータ) (2021-10-31T04:43:05Z) - Factors of Influence for Transfer Learning across Diverse Appearance
Domains and Task Types [50.1843146606122]
現在の最新のコンピュータビジョンモデルでは、簡単な転送学習が一般的です。
転校学習に関するこれまでの体系的な研究は限られており、作業が期待される状況は十分に理解されていない。
本論文では,非常に異なる画像領域にまたがる転送学習の広範な実験的研究を行う。
論文 参考訳(メタデータ) (2021-03-24T16:24:20Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
空間的注意マップとチャネル的注意の両方を原則的に共同学習するための統合的深層フレームワークを提案する。
具体的には,確率的表現学習フレームワークに注目度の推定と相互作用を統合する。
ニューラルネットワーク内で推論ルールを実装し,確率パラメータとcnnフロントエンドパラメータのエンドツーエンド学習を可能にする。
論文 参考訳(メタデータ) (2021-03-05T07:37:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。