Refining Implicit Argument Annotation for UCCA
- URL: http://arxiv.org/abs/2005.12889v4
- Date: Thu, 8 Apr 2021 10:00:17 GMT
- Title: Refining Implicit Argument Annotation for UCCA
- Authors: Ruixiang Cui, Daniel Hershcovich
- Abstract summary: This paper proposes a typology for fine-grained implicit argument annotation on top of Universal Cognitive Conceptual's foundational layer.
The proposed implicit argument categorisation is driven by theories of implicit role interpretation and consists of six types: Deictic, Generic, Genre-based, Type-identifiable, Non-specific, and Iterated-set.
- Score: 6.873471412788333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicate-argument structure analysis is a central component in meaning
representations of text. The fact that some arguments are not explicitly
mentioned in a sentence gives rise to ambiguity in language understanding, and
renders it difficult for machines to interpret text correctly. However, only
few resources represent implicit roles for NLU, and existing studies in NLP
only make coarse distinctions between categories of arguments omitted from
linguistic form. This paper proposes a typology for fine-grained implicit
argument annotation on top of Universal Conceptual Cognitive Annotation's
foundational layer. The proposed implicit argument categorisation is driven by
theories of implicit role interpretation and consists of six types: Deictic,
Generic, Genre-based, Type-identifiable, Non-specific, and Iterated-set. We
exemplify our design by revisiting part of the UCCA EWT corpus, providing a new
dataset annotated with the refinement layer, and making a comparative analysis
with other schemes.
Related papers
- Contribuci\'on de la sem\'antica combinatoria al desarrollo de
herramientas digitales multiling\"ues [0.0]
This paper describes how the field of Combinatorial Semantics has contributed to the design of three prototypes for the automatic generation of argument patterns in nominal phrases in Spanish, French and German.
It also shows the importance of knowing about the argument syntactic-semantic interface in a production situation in the context of foreign languages.
arXiv Detail & Related papers (2023-12-26T19:32:05Z) - A Unifying Framework for Learning Argumentation Semantics [50.69905074548764]
We present a novel framework, which uses an Inductive Logic Programming approach to learn the acceptability semantics for several abstract and structured argumentation frameworks in an interpretable way.
Our framework outperforms existing argumentation solvers, thus opening up new future research directions in the area of formal argumentation and human-machine dialogues.
arXiv Detail & Related papers (2023-10-18T20:18:05Z) - Natural Language Decompositions of Implicit Content Enable Better Text
Representations [56.85319224208865]
We introduce a method for the analysis of text that takes implicitly communicated content explicitly into account.
We use a large language model to produce sets of propositions that are inferentially related to the text that has been observed.
Our results suggest that modeling the meanings behind observed language, rather than the literal text alone, is a valuable direction for NLP.
arXiv Detail & Related papers (2023-05-23T23:45:20Z) - PropSegmEnt: A Large-Scale Corpus for Proposition-Level Segmentation and
Entailment Recognition [63.51569687229681]
We argue for the need to recognize the textual entailment relation of each proposition in a sentence individually.
We propose PropSegmEnt, a corpus of over 45K propositions annotated by expert human raters.
Our dataset structure resembles the tasks of (1) segmenting sentences within a document to the set of propositions, and (2) classifying the entailment relation of each proposition with respect to a different yet topically-aligned document.
arXiv Detail & Related papers (2022-12-21T04:03:33Z) - Semantic Role Labeling Meets Definition Modeling: Using Natural Language
to Describe Predicate-Argument Structures [104.32063681736349]
We present an approach to describe predicate-argument structures using natural language definitions instead of discrete labels.
Our experiments and analyses on PropBank-style and FrameNet-style, dependency-based and span-based SRL also demonstrate that a flexible model with an interpretable output does not necessarily come at the expense of performance.
arXiv Detail & Related papers (2022-12-02T11:19:16Z) - Self-Attentive Constituency Parsing for UCCA-based Semantic Parsing [0.0]
Graph-based representation is one of the semantic representation approaches to express the semantic structure of a text.
In this paper, we focus primarily on UCCA graph-based semantic representation.
We present the results for both single-lingual and cross-lingual tasks using zero-shot and few-shot learning for low-resource languages.
arXiv Detail & Related papers (2021-10-01T19:10:18Z) - Great Service! Fine-grained Parsing of Implicit Arguments [7.785534704637891]
We show that certain types of implicit arguments are more difficult to parse than others.
This work will facilitate a better understanding of implicit and underspecified language, by incorporating it holistically into meaning representations.
arXiv Detail & Related papers (2021-06-04T15:50:35Z) - Exploring Discourse Structures for Argument Impact Classification [48.909640432326654]
This paper empirically shows that the discourse relations between two arguments along the context path are essential factors for identifying the persuasive power of an argument.
We propose DisCOC to inject and fuse the sentence-level structural information with contextualized features derived from large-scale language models.
arXiv Detail & Related papers (2021-06-02T06:49:19Z) - Comparison by Conversion: Reverse-Engineering UCCA from Syntax and
Lexical Semantics [29.971739294416714]
Building robust natural language understanding systems will require a clear characterization of whether and how various linguistic meaning representations complement each other.
We evaluate the mapping between meaning representations from different frameworks using two complementary methods: (i) a rule-based converter, and (ii) a supervised delexicalized that parses to one framework using only information from the other as features.
arXiv Detail & Related papers (2020-11-02T09:03:46Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
We propose a weakly-supervised approach for aspect-based sentiment analysis.
We learn sentiment, aspect> joint topic embeddings in the word embedding space.
We then use neural models to generalize the word-level discriminative information.
arXiv Detail & Related papers (2020-10-13T21:33:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.