Seamlessly Unifying Attributes and Items: Conversational Recommendation
for Cold-Start Users
- URL: http://arxiv.org/abs/2005.12979v5
- Date: Wed, 5 Oct 2022 08:15:26 GMT
- Title: Seamlessly Unifying Attributes and Items: Conversational Recommendation
for Cold-Start Users
- Authors: Shijun Li, Wenqiang Lei, Qingyun Wu, Xiangnan He, Peng Jiang, Tat-Seng
Chua
- Abstract summary: We consider the conversational recommendation for cold-start users, where a system can both ask the attributes from and recommend items to a user interactively.
Our Conversational Thompson Sampling (ConTS) model holistically solves all questions in conversational recommendation by choosing the arm with the maximal reward to play.
- Score: 111.28351584726092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Static recommendation methods like collaborative filtering suffer from the
inherent limitation of performing real-time personalization for cold-start
users. Online recommendation, e.g., multi-armed bandit approach, addresses this
limitation by interactively exploring user preference online and pursuing the
exploration-exploitation (EE) trade-off. However, existing bandit-based methods
model recommendation actions homogeneously. Specifically, they only consider
the items as the arms, being incapable of handling the item attributes, which
naturally provide interpretable information of user's current demands and can
effectively filter out undesired items. In this work, we consider the
conversational recommendation for cold-start users, where a system can both ask
the attributes from and recommend items to a user interactively. This important
scenario was studied in a recent work. However, it employs a hand-crafted
function to decide when to ask attributes or make recommendations. Such
separate modeling of attributes and items makes the effectiveness of the system
highly rely on the choice of the hand-crafted function, thus introducing
fragility to the system. To address this limitation, we seamlessly unify
attributes and items in the same arm space and achieve their EE trade-offs
automatically using the framework of Thompson Sampling. Our Conversational
Thompson Sampling (ConTS) model holistically solves all questions in
conversational recommendation by choosing the arm with the maximal reward to
play. Extensive experiments on three benchmark datasets show that ConTS
outperforms the state-of-the-art methods Conversational UCB (ConUCB) and
Estimation-Action-Reflection model in both metrics of success rate and average
number of conversation turns.
Related papers
- Towards Empathetic Conversational Recommender Systems [77.53167131692]
We propose an empathetic conversational recommender (ECR) framework.
ECR contains two main modules: emotion-aware item recommendation and emotion-aligned response generation.
Our experiments on the ReDial dataset validate the efficacy of our framework in enhancing recommendation accuracy and improving user satisfaction.
arXiv Detail & Related papers (2024-08-30T15:43:07Z) - Leveraging Knowledge Graph Embedding for Effective Conversational Recommendation [4.079573593766921]
We propose a knowledge graph based conversational recommender system (referred as KG-CRS)
Specifically, we first integrate the user-item graph and item-attribute graph into a dynamic graph, dynamically changing during the dialogue process by removing negative items or attributes.
We then learn informative embedding of users, items, and attributes by also considering propagation through neighbors on the graph.
arXiv Detail & Related papers (2024-08-02T15:38:55Z) - On Generative Agents in Recommendation [58.42840923200071]
Agent4Rec is a user simulator in recommendation based on Large Language Models.
Each agent interacts with personalized recommender models in a page-by-page manner.
arXiv Detail & Related papers (2023-10-16T06:41:16Z) - Talk the Walk: Synthetic Data Generation for Conversational Music
Recommendation [62.019437228000776]
We present TalkWalk, which generates realistic high-quality conversational data by leveraging encoded expertise in widely available item collections.
We generate over one million diverse conversations in a human-collected dataset.
arXiv Detail & Related papers (2023-01-27T01:54:16Z) - COLA: Improving Conversational Recommender Systems by Collaborative
Augmentation [9.99763097964222]
We propose a collaborative augmentation (COLA) method to improve both item representation learning and user preference modeling.
We construct an interactive user-item graph from all conversations, which augments item representations with user-aware information.
To improve user preference modeling, we retrieve similar conversations from the training corpus, where the involved items and attributes that reflect the user's potential interests are used to augment the user representation.
arXiv Detail & Related papers (2022-12-15T12:37:28Z) - Hierarchical Conversational Preference Elicitation with Bandit Feedback [36.507341041113825]
We formulate a new conversational bandit problem that allows the recommender system to choose either a key-term or an item to recommend at each round.
We conduct a survey and analyze a real-world dataset to find that, unlike assumptions made in prior works, key-term rewards are mainly affected by rewards of representative items.
We propose two bandit algorithms, Hier-UCB and Hier-LinUCB, that leverage this observed relationship and the hierarchical structure between key-terms and items.
arXiv Detail & Related papers (2022-09-06T05:35:24Z) - What is wrong with you?: Leveraging User Sentiment for Automatic Dialog
Evaluation [73.03318027164605]
We propose to use information that can be automatically extracted from the next user utterance as a proxy to measure the quality of the previous system response.
Our model generalizes across both spoken and written open-domain dialog corpora collected from real and paid users.
arXiv Detail & Related papers (2022-03-25T22:09:52Z) - Discovering Personalized Semantics for Soft Attributes in Recommender
Systems using Concept Activation Vectors [34.56323846959459]
Interactive recommender systems allow users to express intent, preferences, constraints, and contexts in a richer fashion.
One challenge is inferring a user's semantic intent from the open-ended terms or attributes often used to describe a desired item.
We develop a framework to learn a representation that captures the semantics of such attributes and connects them to user preferences and behaviors in recommender systems.
arXiv Detail & Related papers (2022-02-06T18:45:15Z) - Conversational Recommendation: Theoretical Model and Complexity Analysis [6.084774669743511]
We present a theoretical, domain-independent model of conversational recommendation.
We show that finding an efficient conversational strategy is NP-hard.
We also show that catalog characteristics can strongly influence the efficiency of individual conversational strategies.
arXiv Detail & Related papers (2021-11-10T09:05:52Z) - A Bayesian Approach to Conversational Recommendation Systems [60.12942570608859]
We present a conversational recommendation system based on a Bayesian approach.
A case study based on the application of this approach to emphstagend.com, an online platform for booking entertainers, is discussed.
arXiv Detail & Related papers (2020-02-12T15:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.