On Generative Agents in Recommendation
- URL: http://arxiv.org/abs/2310.10108v3
- Date: Fri, 08 Nov 2024 03:58:00 GMT
- Title: On Generative Agents in Recommendation
- Authors: An Zhang, Yuxin Chen, Leheng Sheng, Xiang Wang, Tat-Seng Chua,
- Abstract summary: Agent4Rec is a user simulator in recommendation based on Large Language Models.
Each agent interacts with personalized recommender models in a page-by-page manner.
- Score: 58.42840923200071
- License:
- Abstract: Recommender systems are the cornerstone of today's information dissemination, yet a disconnect between offline metrics and online performance greatly hinders their development. Addressing this challenge, we envision a recommendation simulator, capitalizing on recent breakthroughs in human-level intelligence exhibited by Large Language Models (LLMs). We propose Agent4Rec, a user simulator in recommendation, leveraging LLM-empowered generative agents equipped with user profile, memory, and actions modules specifically tailored for the recommender system. In particular, these agents' profile modules are initialized using real-world datasets (e.g. MovieLens, Steam, Amazon-Book), capturing users' unique tastes and social traits; memory modules log both factual and emotional memories and are integrated with an emotion-driven reflection mechanism; action modules support a wide variety of behaviors, spanning both taste-driven and emotion-driven actions. Each agent interacts with personalized recommender models in a page-by-page manner, relying on a pre-implemented collaborative filtering-based recommendation algorithm. We delve into both the capabilities and limitations of Agent4Rec, aiming to explore an essential research question: ``To what extent can LLM-empowered generative agents faithfully simulate the behavior of real, autonomous humans in recommender systems?'' Extensive and multi-faceted evaluations of Agent4Rec highlight both the alignment and deviation between agents and user-personalized preferences. Beyond mere performance comparison, we explore insightful experiments, such as emulating the filter bubble effect and discovering the underlying causal relationships in recommendation tasks. Our codes are available at https://github.com/LehengTHU/Agent4Rec.
Related papers
- Aligning Agents like Large Language Models [8.873319874424167]
Training agents to behave as desired in complex 3D environments from high-dimensional sensory information is challenging.
We draw an analogy between the undesirable behaviors of imitation learning agents and the unhelpful responses of unaligned large language models (LLMs)
We demonstrate that we can align our agent to consistently perform the desired mode, while providing insights and advice for successfully applying this approach to training agents.
arXiv Detail & Related papers (2024-06-06T16:05:45Z) - MMGRec: Multimodal Generative Recommendation with Transformer Model [81.61896141495144]
MMGRec aims to introduce a generative paradigm into multimodal recommendation.
We first devise a hierarchical quantization method Graph CF-RQVAE to assign Rec-ID for each item from its multimodal information.
We then train a Transformer-based recommender to generate the Rec-IDs of user-preferred items based on historical interaction sequences.
arXiv Detail & Related papers (2024-04-25T12:11:27Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
We propose AgentCF for simulating user-item interactions in recommender systems through agent-based collaborative filtering.
We creatively consider not only users but also items as agents, and develop a collaborative learning approach that optimize both kinds of agents together.
Overall, the optimized agents exhibit diverse interaction behaviors within our framework, including user-item, user-user, item-item, and collective interactions.
arXiv Detail & Related papers (2023-10-13T16:37:14Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z) - Retrieval-Augmented Reinforcement Learning [63.32076191982944]
We train a network to map a dataset of past experiences to optimal behavior.
The retrieval process is trained to retrieve information from the dataset that may be useful in the current context.
We show that retrieval-augmented R2D2 learns significantly faster than the baseline R2D2 agent and achieves higher scores.
arXiv Detail & Related papers (2022-02-17T02:44:05Z) - Controllable Multi-Interest Framework for Recommendation [64.30030600415654]
We formalize the recommender system as a sequential recommendation problem.
We propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec.
Our framework has been successfully deployed on the offline Alibaba distributed cloud platform.
arXiv Detail & Related papers (2020-05-19T10:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.