Noisy pre-processing facilitating a photonic realisation of
device-independent quantum key distribution
- URL: http://arxiv.org/abs/2005.13015v1
- Date: Tue, 26 May 2020 20:22:43 GMT
- Title: Noisy pre-processing facilitating a photonic realisation of
device-independent quantum key distribution
- Authors: M. Ho, P. Sekatski, E.Y.-Z. Tan, R. Renner, J.-D. Bancal and N.
Sangouard
- Abstract summary: Device-independent quantum key distribution provides security even when the equipment used to communicate over the quantum channel is largely uncharacterized.
A central obstacle in photonic implementations is that the global detection efficiency must be above a certain threshold.
We here propose a method to significantly relax this threshold, while maintaining provable device-independent security.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Device-independent quantum key distribution provides security even when the
equipment used to communicate over the quantum channel is largely
uncharacterized. An experimental demonstration of device-independent quantum
key distribution is however challenging. A central obstacle in photonic
implementations is that the global detection efficiency, i.e., the probability
that the signals sent over the quantum channel are successfully received, must
be above a certain threshold. We here propose a method to significantly relax
this threshold, while maintaining provable device-independent security. This is
achieved with a protocol that adds artificial noise, which cannot be known or
controlled by an adversary, to the initial measurement data (the raw key).
Focusing on a realistic photonic setup using a source based on spontaneous
parametric down conversion, we give explicit bounds on the minimal required
global detection efficiency.
Related papers
- Unconditionally secure key distribution without quantum channel [0.76146285961466]
Currently, the quantum scheme stands as the only known method for achieving unconditionally secure key distribution.
We propose another key distribution scheme with unconditional security, named probability key distribution, that promises users between any two distances to generate a fixed and high secret key rate.
Non-local entangled states can be generated, identified and measured in the equivalent virtual protocol and can be used to extract secret keys.
arXiv Detail & Related papers (2024-08-24T15:13:14Z) - Retrieving non-linear features from noisy quantum states [11.289924445850328]
In this paper, we analyze the feasibility and efficiency of extracting high-order moments from noisy states.
We first show that there exists a quantum protocol capable of accomplishing this task if and only if the underlying noise channel is invertible.
Our work contributes to a deeper understanding of how quantum noise could affect high-order information extraction and provides guidance on how to tackle it.
arXiv Detail & Related papers (2023-09-20T15:28:18Z) - Harnessing high-dimensional temporal entanglement using limited interferometric setups [41.94295877935867]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - Semi-device independent nonlocality certification for near-term quantum
networks [46.37108901286964]
Bell tests are the most rigorous method for verifying entanglement in quantum networks.
If there is any signaling between the parties, then the violation of Bell inequalities can no longer be used.
We propose a semi-device independent protocol that allows us to numerically correct for effects of correlations in experimental probability distributions.
arXiv Detail & Related papers (2023-05-23T14:39:08Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Quantum Complementarity Approach to Device-Independent Security [2.782396962787398]
We show the complementarity security origin of device-independent quantum cryptography tasks.
We generalize the sample entropy in classical Shannon theory for the finite-size analysis.
Applying it to the data in a recent ion-trap-based device-independent quantum key distribution experiment, one could reduce the requirement on data size to less than a third.
arXiv Detail & Related papers (2021-11-27T09:42:44Z) - Sample-efficient device-independent quantum state verification and
certification [68.8204255655161]
Authentication of quantum sources is a crucial task in building reliable and efficient protocols for quantum-information processing.
We develop a systematic approach to device-independent verification of quantum states free of IID assumptions in the finite copy regime.
We show that device-independent verification can be performed with optimal sample efficiency.
arXiv Detail & Related papers (2021-05-12T17:48:04Z) - A coherence-witnessing game and applications to semi-device-independent
quantum key distribution [1.024113475677323]
We introduce a coherence-based, semi-device-independent, semi-quantum key distribution protocol built upon a noise-robust version of a coherence equality game.
Security is proven in the bounded quantum storage model, requiring users to implement only classical operations.
arXiv Detail & Related papers (2021-03-11T17:55:34Z) - Bell nonlocality is not sufficient for the security of standard
device-independent quantum key distribution protocols [1.9573380763700712]
Device-independent quantum key distribution is a secure quantum cryptographic paradigm that allows two honest users to establish a secret key.
We show that no protocol of this form allows for establishing a secret key when implemented on any correlation obtained by measuring local projective measurements.
arXiv Detail & Related papers (2021-03-03T19:10:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.