Sample-efficient device-independent quantum state verification and
certification
- URL: http://arxiv.org/abs/2105.05832v3
- Date: Sat, 5 Feb 2022 10:37:54 GMT
- Title: Sample-efficient device-independent quantum state verification and
certification
- Authors: Aleksandra Go\v{c}anin, Ivan \v{S}upi\'c, Borivoje Daki\'c
- Abstract summary: Authentication of quantum sources is a crucial task in building reliable and efficient protocols for quantum-information processing.
We develop a systematic approach to device-independent verification of quantum states free of IID assumptions in the finite copy regime.
We show that device-independent verification can be performed with optimal sample efficiency.
- Score: 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Authentication of quantum sources is a crucial task in building reliable and
efficient protocols for quantum-information processing. Steady progress
vis-\`{a}-vis verification of quantum devices in the scenario with fully
characterized measurement devices has been observed in recent years. When it
comes to the scenario with uncharacterized measurements, the so-called
black-box scenario, practical verification methods are still rather scarce.
Development of self-testing methods is an important step forward, but these
results so far have been used for reliable verification only by considering the
asymptotic behavior of large, identically and independently distributed (IID)
samples of a quantum resource. Such strong assumptions deprive the verification
procedure of its truly device-independent character. In this paper, we develop
a systematic approach to device-independent verification of quantum states free
of IID assumptions in the finite copy regime. Remarkably, we show that
device-independent verification can be performed with optimal sample
efficiency. Finally, for the case of independent copies, we develop a
device-independent protocol for quantum state certification: a protocol in
which a fragment of the resource copies is measured to warrant the rest of the
copies to be close to some target state.
Related papers
- Certifying classes of $d$-outcome measurements with quantum steering [49.1574468325115]
We provide a construction of a family of steering inequalities tailored to large classes of $d$-outcomes projective measurements.
We prove that the maximal quantum violation of those inequalities can be used for certification of those measurements and the maximally entangled state of two qudits.
arXiv Detail & Related papers (2024-10-27T15:32:53Z) - Efficient and Device-Independent Active Quantum State Certification [0.0]
Entangled quantum states are essential ingredients for many quantum technologies, but they must be validated before they are used.
Most existing approaches are based on preparing an ensemble of nominally identical and independent (IID) quantum states, and then measuring each copy of the ensemble.
We experimentally implement quantum state certification (QSC), which measures only a subset of the ensemble, certifying the fidelity of the remaining states.
arXiv Detail & Related papers (2024-07-18T21:54:13Z) - Experimental Sample-Efficient and Device-Independent GHZ State Certification [1.1650821883155187]
certification of quantum resources is a critical tool in the development of quantum information processing.
We show the efficient and device-independent certification of a single copy of a four-qubit GHZ state.
arXiv Detail & Related papers (2024-07-18T14:01:42Z) - Device-independent certification of desirable properties with a confidence interval [0.0]
We provide a versatile solution for rigorous device-independent certification.
We show how the PBR protocol and the martingale-based protocol often offer similar performance.
Our findings also show that the performance of the martingale-based protocol may be severely affected by one's choice of the witness.
arXiv Detail & Related papers (2024-01-12T15:21:21Z) - Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Robust certification of arbitrary outcome quantum measurements from
temporal correlations [0.0]
We establish a protocol for certification of a particular set of $d$-outcome quantum measurements.
We show that our protocol is robust against practical non-ideal realizations.
As an offshoot of our protocol, we present a scheme for secure certification of genuine quantum randomness.
arXiv Detail & Related papers (2021-10-03T16:19:16Z) - Quantum verification and estimation with few copies [63.669642197519934]
The verification and estimation of large entangled systems represents one of the main challenges in the employment of such systems for reliable quantum information processing.
This review article presents novel techniques focusing on a fixed number of resources (sampling complexity) and thus prove suitable for systems of arbitrary dimension.
Specifically, a probabilistic framework requiring at best only a single copy for entanglement detection is reviewed, together with the concept of selective quantum state tomography.
arXiv Detail & Related papers (2021-09-08T18:20:07Z) - Semi-device-independent certification of independent quantum state and
measurement devices [0.0]
Certifying that quantum devices behave as intended is crucial for quantum information science.
The experimenter assumes the independence of the devices and knowledge of the unambiguous space dimension.
The presented methods can readily be implemented in experiments.
arXiv Detail & Related papers (2020-03-08T22:15:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.