論文の概要: Identifying Vulnerabilities of Industrial Control Systems using
Evolutionary Multiobjective Optimisation
- arxiv url: http://arxiv.org/abs/2005.13095v1
- Date: Wed, 27 May 2020 00:22:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 09:07:37.478524
- Title: Identifying Vulnerabilities of Industrial Control Systems using
Evolutionary Multiobjective Optimisation
- Title(参考訳): 進化的多目的最適化を用いた産業制御システムの脆弱性同定
- Authors: Nilufer Tuptuk and Stephen Hailes
- Abstract要約: 進化的多目的最適化(EMO)アルゴリズムを用いて,実世界の産業制御システム(ICS)の脆弱性を同定する。
本手法は化学プラントシミュレータであるテネシー・イーストマン (TE) プロセスモデルを用いて評価した。
新たな侵入検知システムという形でこれらの攻撃に対する防御が開発された。
- 参考スコア(独自算出の注目度): 1.8275108630751844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we propose a novel methodology to assist in identifying
vulnerabilities in a real-world complex heterogeneous industrial control
systems (ICS) using two evolutionary multiobjective optimisation (EMO)
algorithms, NSGA-II and SPEA2. Our approach is evaluated on a well known
benchmark chemical plant simulator, the Tennessee Eastman (TE) process model.
We identified vulnerabilities in individual components of the TE model and then
made use of these to generate combinatorial attacks to damage the safety of the
system, and to cause economic loss. Results were compared against random
attacks, and the performance of the EMO algorithms were evaluated using
hypervolume, spread and inverted generational distance (IGD) metrics. A defence
against these attacks in the form of a novel intrusion detection system was
developed, using a number of machine learning algorithms. Designed approach was
further tested against the developed detection methods. Results demonstrate
that EMO algorithms are a promising tool in the identification of the most
vulnerable components of ICS, and weaknesses of any existing detection systems
in place to protect the system. The proposed approach can be used by control
and security engineers to design security aware control, and test the
effectiveness of security mechanisms, both during design, and later during
system operation.
- Abstract(参考訳): 本稿では,2つの進化的多目的最適化(EMO)アルゴリズム,NSGA-II,SPEA2を用いて,実世界の複素異種産業制御システム(ICS)の脆弱性の同定を支援する手法を提案する。
本手法は,化学プラントシミュレータであるテネシー・イーストマン(TE)プロセスモデルを用いて評価した。
TEモデルの個々のコンポーネントの脆弱性を特定し,これらを用いて,システムの安全性を損なうための組合せ攻撃を発生させ,経済的損失を引き起こす。
その結果, 乱数攻撃との比較を行い, EMOアルゴリズムの性能を超体積, 拡散, 逆世代距離(IGD)測定値を用いて評価した。
多数の機械学習アルゴリズムを用いて,新たな侵入検知システムという形でこれらの攻撃に対する防御を開発した。
開発した検出手法に対して設計手法をさらに試験した。
その結果、EMOアルゴリズムはICSの最も脆弱なコンポーネントを識別する上で有望なツールであり、システムを保護するための既存の検出システムの弱点であることがわかった。
提案手法は、制御技術者とセキュリティエンジニアがセキュリティ意識制御を設計し、設計中とシステム操作後の両方でセキュリティメカニズムの有効性をテストするために利用できる。
関連論文リスト
- An Attention-Based Deep Generative Model for Anomaly Detection in Industrial Control Systems [3.303448701376485]
異常検出は、産業制御システムの安全かつ信頼性の高い運用に不可欠である。
本稿では,このニーズを満たすための新しい深層生成モデルを提案する。
論文 参考訳(メタデータ) (2024-05-03T23:58:27Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Design Methodology for Deep Out-of-Distribution Detectors in Real-Time
Cyber-Physical Systems [5.233831361879669]
アウト・オブ・ディストリビューション(OOD)検出器はMLモデルと並行して動作し、フラグ入力は望ましくない結果をもたらす可能性がある。
本研究は,組込みアプリケーションの精度および応答時間要求を満たすため,深部OOD検出器をチューニングするための設計手法を提案する。
論文 参考訳(メタデータ) (2022-07-29T14:06:27Z) - Learning-Based Vulnerability Analysis of Cyber-Physical Systems [10.066594071800337]
本研究は,サイバー物理システムの脆弱性解析におけるディープラーニングの利用に焦点を当てる。
我々は,低レベル制御が拡張カルマンフィルタ(ekf)や異常検出器(anomaly detector)などに基づくcpsにおいて広く用いられている制御アーキテクチャを考える。
潜在的なセンシング攻撃が持つ影響を分析することを容易にするため、学習可能な攻撃生成器の開発が目的である。
論文 参考訳(メタデータ) (2021-03-10T06:52:26Z) - An RL-Based Adaptive Detection Strategy to Secure Cyber-Physical Systems [0.0]
ソフトウェアベースの制御への依存が高まり、サイバー物理システムの脆弱性が高まった。
攻撃シナリオから学んだ経験に基づいて,このような検出器のパラメータを適応的に設定する強化学習(RL)ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-04T07:38:50Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
本稿では,システムの物理的特性に反する逆スプーフ信号を生成するための新しい枠組みを提案する。
トップセキュリティカンファレンスで公表された4つの異常検知器を分析した。
論文 参考訳(メタデータ) (2020-12-07T11:02:44Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Securing of Unmanned Aerial Systems (UAS) against security threats using
human immune system [1.2691047660244335]
人体免疫システム(HIS)を用いた安全対策のための侵入検知システム(IDS)が提案されている。
IDSはターゲットシステムに侵入する試みを検知し、応答するために使用される。
論文 参考訳(メタデータ) (2020-03-01T19:05:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。