論文の概要: Evolutionary NAS with Gene Expression Programming of Cellular Encoding
- arxiv url: http://arxiv.org/abs/2005.13110v2
- Date: Thu, 3 Dec 2020 15:41:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 08:01:58.163340
- Title: Evolutionary NAS with Gene Expression Programming of Cellular Encoding
- Title(参考訳): セルエンコーディングの遺伝子発現プログラミングによる進化的NAS
- Authors: Clifford Broni-Bediako, Yuki Murata, Luiz Henrique Mormille and
Masayasu Atsumi
- Abstract要約: 線形固定長文字列の染色体に局所グラフ変換を埋め込んだ新しい生成符号化方式を提案する。
実験では、CNNアーキテクチャの性能を向上させるアーキテクチャを発見する上で、SLGEの有効性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The renaissance of neural architecture search (NAS) has seen classical
methods such as genetic algorithms (GA) and genetic programming (GP) being
exploited for convolutional neural network (CNN) architectures. While recent
work have achieved promising performance on visual perception tasks, the direct
encoding scheme of both GA and GP has functional complexity deficiency and does
not scale well on large architectures like CNN. To address this, we present a
new generative encoding scheme -- $symbolic\ linear\ generative\ encoding$
(SLGE) -- simple, yet powerful scheme which embeds local graph transformations
in chromosomes of linear fixed-length string to develop CNN architectures of
variant shapes and sizes via evolutionary process of gene expression
programming. In experiments, the effectiveness of SLGE is shown in discovering
architectures that improve the performance of the state-of-the-art handcrafted
CNN architectures on CIFAR-10 and CIFAR-100 image classification tasks; and
achieves a competitive classification error rate with the existing NAS methods
using less GPU resources.
- Abstract(参考訳): ニューラルアーキテクチャサーチ(NAS)のルネッサンスは、遺伝的アルゴリズム(GA)や遺伝的プログラミング(GP)といった古典的な手法が、畳み込みニューラルネットワーク(CNN)アーキテクチャに活用されている。
最近の研究は視覚知覚タスクにおいて有望な性能を達成したが、GAとGPの直接符号化方式は機能的複雑性に欠けており、CNNのような大規模アーキテクチャではうまくスケールしない。
そこで我々は,線形固定長文字列の染色体に局所グラフ変換を埋め込み,遺伝子発現プログラミングの進化過程を通じて変異型形状とサイズをcnnアーキテクチャで構築する,単純かつ強力な手法である $symbolic\ linear\ generative\ encoding$ (slge) を提案する。
実験では、CIFAR-10およびCIFAR-100画像分類タスクにおける最先端の手作りCNNアーキテクチャの性能を向上させるアーキテクチャの発見においてSLGEの有効性を示し、GPUリソースの少ない既存のNAS手法と競合する分類誤差率を達成する。
関連論文リスト
- Cartesian Genetic Programming Approach for Designing Convolutional Neural Networks [0.0]
人工ニューラルネットワークの設計において、革新的なアプローチの1つの重要な側面は、新しいニューラルネットワークアーキテクチャを提案することである。
本研究では,CNNを設計するために純粋遺伝的プログラミング手法を用いる。
予備実験の過程で,提案手法は有望な結果をもたらす。
論文 参考訳(メタデータ) (2024-09-30T18:10:06Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Neural Architecture Search Using Genetic Algorithm for Facial Expression
Recognition [2.7504274245107303]
本稿では,FERタスク上でCNNを自動生成する,巧妙な符号化復号機構を用いた遺伝的アルゴリズムを提案する。
提案アルゴリズムは、CK+およびFERGデータセット上で最もよく知られた結果と、JSFFEデータセット上での競合結果を達成する。
論文 参考訳(メタデータ) (2023-04-12T16:36:07Z) - Convolutional Neural Generative Coding: Scaling Predictive Coding to
Natural Images [79.07468367923619]
畳み込み型神経生成符号化(Conv-NGC)を開発した。
我々は、潜伏状態マップを段階的に洗練する柔軟な神経生物学的動機付けアルゴリズムを実装した。
本研究は,脳にインスパイアされたニューラル・システムによる再建と画像復調の課題に対する効果について検討する。
論文 参考訳(メタデータ) (2022-11-22T06:42:41Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
不均一グラフニューラルネットワーク(HGNN)は、不均一グラフの豊富な構造的および意味的な情報をノード表現に埋め込む強力な能力を持つ。
既存のHGNNは、同種グラフ上のグラフニューラルネットワーク(GNN)から多くのメカニズム、特に注意機構と多層構造を継承する。
本稿では,これらのメカニズムを詳細に検討し,簡便かつ効率的なヘテロジニアスグラフニューラルネットワーク(SeHGNN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T10:01:46Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Neural Architecture Search based on Cartesian Genetic Programming Coding
Method [6.519170476143571]
文分類課題を解決するために,CGPに基づくNASの進化的アプローチであるCGPNASを提案する。
実験の結果,検索されたアーキテクチャは人間設計アーキテクチャの性能に匹敵することがわかった。
論文 参考訳(メタデータ) (2021-03-12T09:51:03Z) - Genetic U-Net: Automatically Designed Deep Networks for Retinal Vessel
Segmentation Using a Genetic Algorithm [2.6629444004809826]
遺伝的U-Netは、より優れた網膜血管セグメンテーションを実現することができるが、アーキテクチャに基づくパラメータが少ないU字型畳み込みニューラルネットワーク(CNN)を生成するために提案されている。
実験の結果,提案手法を用いて得られたアーキテクチャは,元のU-Netパラメータの1%以下で優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-29T13:31:36Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - A Generic Graph-based Neural Architecture Encoding Scheme for
Predictor-based NAS [18.409809742204896]
この研究は、予測子ベースのニューラルアーキテクチャ探索を改善するために、新しいグラフベースのニューラルArchiTecture Scheme(別名GATES)を提案する。
Gatesは、その操作を、ニューラルネットワークの実際のデータ処理を模倣した伝播情報の変換としてモデル化する。
論文 参考訳(メタデータ) (2020-04-04T09:54:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。