論文の概要: Rationalizing Text Matching: Learning Sparse Alignments via Optimal
Transport
- arxiv url: http://arxiv.org/abs/2005.13111v1
- Date: Wed, 27 May 2020 01:20:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 07:54:09.521700
- Title: Rationalizing Text Matching: Learning Sparse Alignments via Optimal
Transport
- Title(参考訳): テキストマッチングの合理化:最適移動によるスパースアライメントの学習
- Authors: Kyle Swanson, Lili Yu, Tao Lei
- Abstract要約: 本研究では,この選択的合理化アプローチをテキストマッチングに拡張する。
目標は、下流の予測の正当化として、トークンや文などのテキストを共同で選択し、調整することである。
我々のアプローチでは、入力間の最小コストアライメントを見つけるために最適なトランスポート(OT)を採用している。
- 参考スコア(独自算出の注目度): 14.86310501896212
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Selecting input features of top relevance has become a popular method for
building self-explaining models. In this work, we extend this selective
rationalization approach to text matching, where the goal is to jointly select
and align text pieces, such as tokens or sentences, as a justification for the
downstream prediction. Our approach employs optimal transport (OT) to find a
minimal cost alignment between the inputs. However, directly applying OT often
produces dense and therefore uninterpretable alignments. To overcome this
limitation, we introduce novel constrained variants of the OT problem that
result in highly sparse alignments with controllable sparsity. Our model is
end-to-end differentiable using the Sinkhorn algorithm for OT and can be
trained without any alignment annotations. We evaluate our model on the
StackExchange, MultiNews, e-SNLI, and MultiRC datasets. Our model achieves very
sparse rationale selections with high fidelity while preserving prediction
accuracy compared to strong attention baseline models.
- Abstract(参考訳): トップ関係の入力特徴の選択は、自己説明型モデルを構築する一般的な方法となっている。
本研究では,この選択的合理化アプローチをテキストマッチングに拡張し,トークンや文などのテキストピースを,下流予測の正当化として共同で選択・調整することを目的としている。
我々のアプローチでは、入力間の最小コストアライメントを見つけるために最適なトランスポート(OT)を採用している。
しかし、直接 OT を適用すると、しばしば密度が高く解釈不能なアライメントが生じる。
この制限を克服するために、制御可能な間隔と高度にスパースなアライメントをもたらすOT問題の制約付き変種を導入する。
私たちのモデルはotのspinhornアルゴリズムを使ってエンドツーエンドで微分可能で、アライメントアノテーションなしでトレーニングできます。
我々はstackexchange、multinews、e-snli、multircデータセットでモデルを評価する。
本モデルでは,強い注意ベースラインモデルと比較して予測精度を保ちながら,高い忠実度で極めてスパースな合理的選択を実現する。
関連論文リスト
- Margin-aware Preference Optimization for Aligning Diffusion Models without Reference [19.397326645617422]
本稿では、SDXL(Stable Diffusion XL)のような最近のテキスト・画像拡散モデルのアライメントに焦点を当てる。
参照モデルに依存しない拡散モデルのための新しいメモリフレンドリーな選好アライメント手法を提案し,マージン・アウェア・選好最適化(MaPO)を提案する。
MaPOは、好ましくも好ましくない画像集合と好ましくも好まれる集合との近縁マージンを最大化し、同時に一般的なスタイリスティックな特徴と嗜好を学習する。
論文 参考訳(メタデータ) (2024-06-10T16:14:45Z) - Linear Alignment: A Closed-form Solution for Aligning Human Preferences without Tuning and Feedback [70.32795295142648]
リニアアライメントは、言語モデルと人間の好みを1つの推論ステップで整列する新しいアルゴリズムである。
一般的な選好データセットとパーソナライズされた選好データセットの実験により、線形アライメントはLLMアライメントの性能と効率を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2024-01-21T10:46:23Z) - Sequential Recommendation via Stochastic Self-Attention [68.52192964559829]
Transformerベースのアプローチでは、アイテムをベクトルとして埋め込んで、ドット積の自己アテンションを使用してアイテム間の関係を測定する。
本稿では,これらの問題を克服するための新しいtextbfStochastic textbfSelf-textbfAttention (STOSA) を提案する。
我々は、アイテムと項目の位置関係を列で特徴づける新しいワッサースタイン自己保持モジュールを考案した。
論文 参考訳(メタデータ) (2022-01-16T12:38:45Z) - Using Optimal Transport as Alignment Objective for fine-tuning
Multilingual Contextualized Embeddings [7.026476782041066]
我々は,マルチリンガルな文脈化表現を改善するために,微調整時のアライメント目的として最適輸送(OT)を提案する。
このアプローチでは、微調整の前に単語アライメントペアを必要とせず、教師なしの方法で文脈内の単語アライメントを学習する。
論文 参考訳(メタデータ) (2021-10-06T16:13:45Z) - Controlled Text Generation as Continuous Optimization with Multiple
Constraints [23.71027518888138]
事前学習したモデルから制御可能な推論を行うためのフレキシブルでモジュラーなアルゴリズムを提案する。
所望のテキストを生成するために,ラグランジアン乗算器と勾配差に基づく手法を用いる。
我々は,複数の文レベル属性を用いた制御可能な機械翻訳とスタイル変換のアプローチを評価する。
論文 参考訳(メタデータ) (2021-08-04T05:25:20Z) - Structured Reordering for Modeling Latent Alignments in Sequence
Transduction [86.94309120789396]
本稿では,分離可能な置換の辺りを正確に推定する効率的な動的プログラミングアルゴリズムを提案する。
結果のSeq2seqモデルは、合成問題やNLPタスクの標準モデルよりも体系的な一般化が優れている。
論文 参考訳(メタデータ) (2021-06-06T21:53:54Z) - Improving Text Generation with Student-Forcing Optimal Transport [122.11881937642401]
トレーニングモードとテストモードで生成されたシーケンスに最適なトランスポート(OT)を提案する。
テキストシーケンスの構造的および文脈的情報に基づいて、OT学習を改善するための拡張も提案されている。
提案手法の有効性は,機械翻訳,テキスト要約,テキスト生成タスクにおいて検証される。
論文 参考訳(メタデータ) (2020-10-12T19:42:25Z) - Logic Constrained Pointer Networks for Interpretable Textual Similarity [11.142649867439406]
本稿では, セシネルゲーティング機能を備えた新しいポインターネットワークモデルを導入し, 構成チャンクを整列させる。
両文の相違を等しく補償し、アライメントが双方向であることを保証するために、損失関数によるこのベースモデルを改善する。
このモデルは、チャンクアライメントタスクのためのベンチマークSemEvalデータセットにおいて、97.73と96.32のF1スコアを達成する。
論文 参考訳(メタデータ) (2020-07-15T13:01:44Z) - Graph Optimal Transport for Cross-Domain Alignment [121.80313648519203]
クロスドメインアライメントはコンピュータビジョンと自然言語処理の基本である。
我々は、最近の最適輸送(OT)の進歩から発芽する原則的なフレームワークであるグラフ最適輸送(GOT)を提案する。
実験は、幅広いタスクにわたるベースライン上でのGOTの一貫性のある性能を示す。
論文 参考訳(メタデータ) (2020-06-26T01:14:23Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
変分オートエンコーダ(VAE)は、エンドツーエンドの表現学習において必須のツールである。
VAEは強い自己回帰デコーダで潜伏変数を無視する傾向がある。
よりコンパクトな潜在空間において暗黙的な潜在特徴マッチングを強制する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2020-04-22T14:41:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。