論文の概要: Transition-based Semantic Dependency Parsing with Pointer Networks
- arxiv url: http://arxiv.org/abs/2005.13344v2
- Date: Thu, 28 May 2020 11:10:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 08:57:23.204527
- Title: Transition-based Semantic Dependency Parsing with Pointer Networks
- Title(参考訳): ポインタネットワークを用いた遷移型意味的依存関係解析
- Authors: Daniel Fern\'andez-Gonz\'alez and Carlos G\'omez-Rodr\'iguez
- Abstract要約: 本稿では,ラベル付き非巡回グラフを容易に生成し,セマンティック依存解析を行う遷移システムを提案する。
BERTから抽出した深層文脈化単語埋め込みによるアプローチを強化する。
結果として得られたシステムは、既存のトランジションベースモデルをすべて上回るだけでなく、SemEval 2015 18の英語データセットでこれまでで最高の完全教師付き精度を達成している。
- 参考スコア(独自算出の注目度): 0.34376560669160383
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transition-based parsers implemented with Pointer Networks have become the
new state of the art in dependency parsing, excelling in producing labelled
syntactic trees and outperforming graph-based models in this task. In order to
further test the capabilities of these powerful neural networks on a harder NLP
problem, we propose a transition system that, thanks to Pointer Networks, can
straightforwardly produce labelled directed acyclic graphs and perform semantic
dependency parsing. In addition, we enhance our approach with deep
contextualized word embeddings extracted from BERT. The resulting system not
only outperforms all existing transition-based models, but also matches the
best fully-supervised accuracy to date on the SemEval 2015 Task 18 English
datasets among previous state-of-the-art graph-based parsers.
- Abstract(参考訳): Pointer Networksで実装されたトランジッションベースのパーサは、依存性解析の新たな状態となり、ラベル付き構文木の生成や、このタスクにおけるグラフベースのモデルのパフォーマンスに優れています。
より難しいNLP問題において、これらの強力なニューラルネットワークの機能をテストするために、Pointer Networksにより、ラベル付き非巡回グラフを簡単に生成し、セマンティック依存解析を行うことができる遷移システムを提案する。
さらに, BERT から抽出した深層文脈化単語埋め込みによるアプローチを強化する。
その結果得られたシステムは、既存のトランジッションベースのモデルをすべて上回るだけでなく、以前の最先端のグラフベースのパーサーであるsemeval 2015 task 18の英語データセットにおいて、これまでで最高の教師付き精度に匹敵する。
関連論文リスト
- A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - Unleashing the Potential of Text-attributed Graphs: Automatic Relation Decomposition via Large Language Models [31.443478448031886]
RoSE (Relation-oriented Semantic Edge-Decomposition) は、生のテキスト属性を分析してグラフ構造を分解する新しいフレームワークである。
我々のフレームワークは、さまざまなデータセットのノード分類性能を大幅に向上させ、ウィスコンシンデータセットでは最大16%の改善を実現した。
論文 参考訳(メタデータ) (2024-05-28T20:54:47Z) - CONVERT:Contrastive Graph Clustering with Reliable Augmentation [110.46658439733106]
信頼性オーグメンテーション(CONVERT)を用いたContrastiVe Graph ClustEringネットワークを提案する。
本手法では,データ拡張を可逆的パーターブ・リカバリネットワークにより処理する。
セマンティクスの信頼性をさらに保証するために、ネットワークを制約する新たなセマンティクス損失が提示される。
論文 参考訳(メタデータ) (2023-08-17T13:07:09Z) - Scalable Learning of Latent Language Structure With Logical Offline
Cycle Consistency [71.42261918225773]
概念的には、LOCCOは、トレーニング対象のセマンティクスを使用してラベルなしテキストのアノテーションを生成する、自己学習の一形態と見なすことができる。
追加ボーナスとして、LOCCOによって生成されたアノテーションは、神経テキスト生成モデルをトレーニングするために自明に再利用することができる。
論文 参考訳(メタデータ) (2023-05-31T16:47:20Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - Coordinate Constructions in English Enhanced Universal Dependencies:
Analysis and Computational Modeling [1.9950682531209154]
拡張ユニバーサル依存(UD)における座標構成の表現に対処する。
手動で編集した構文グラフの大規模なデータセットを作成する。
元のデータにおけるいくつかの系統的誤りを識別し、結合の伝播も提案する。
論文 参考訳(メタデータ) (2021-03-16T10:24:27Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z) - Discontinuous Constituent Parsing with Pointer Networks [0.34376560669160383]
不連続な構成木は、ドイツ語のような言語の文法的な現象を表現するのに不可欠である。
係り受け解析の最近の進歩は、ポインタネットワークが文中の単語間の構文関係を効率的に解析することに優れていることを示している。
本稿では,最も正確な不連続な構成表現を生成するニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-02-05T15:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。