The Adversarial Resilience Learning Architecture for AI-based Modelling,
Exploration, and Operation of Complex Cyber-Physical Systems
- URL: http://arxiv.org/abs/2005.13601v1
- Date: Wed, 27 May 2020 19:19:57 GMT
- Title: The Adversarial Resilience Learning Architecture for AI-based Modelling,
Exploration, and Operation of Complex Cyber-Physical Systems
- Authors: Eric MSP Veith, Nils Wenninghoff, and Emilie Frost
- Abstract summary: We describe the concept of Adversarial Learning (ARL) that formulates a new approach to complex environment checking and resilient operation.
The quintessence of ARL lies in both agents exploring the system and training each other without any domain knowledge.
Here, we introduce the ARL software architecture that allows to use a wide range of model-free as well as model-based DRL-based algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern algorithms in the domain of Deep Reinforcement Learning (DRL)
demonstrated remarkable successes; most widely known are those in game-based
scenarios, from ATARI video games to Go and the StarCraft~\textsc{II} real-time
strategy game. However, applications in the domain of modern Cyber-Physical
Systems (CPS) that take advantage a vast variety of DRL algorithms are few. We
assume that the benefits would be considerable: Modern CPS have become
increasingly complex and evolved beyond traditional methods of modelling and
analysis. At the same time, these CPS are confronted with an increasing amount
of stochastic inputs, from volatile energy sources in power grids to broad user
participation stemming from markets. Approaches of system modelling that use
techniques from the domain of Artificial Intelligence (AI) do not focus on
analysis and operation. In this paper, we describe the concept of Adversarial
Resilience Learning (ARL) that formulates a new approach to complex environment
checking and resilient operation: It defines two agent classes, attacker and
defender agents. The quintessence of ARL lies in both agents exploring the
system and training each other without any domain knowledge. Here, we introduce
the ARL software architecture that allows to use a wide range of model-free as
well as model-based DRL-based algorithms, and document results of concrete
experiment runs on a complex power grid.
Related papers
- Mastering the Digital Art of War: Developing Intelligent Combat Simulation Agents for Wargaming Using Hierarchical Reinforcement Learning [0.0]
dissertation proposes a comprehensive approach, including targeted observation abstractions, multi-model integration, a hybrid AI framework, and an overarching hierarchical reinforcement learning framework.
Our localized observation abstraction using piecewise linear spatial decay simplifies the RL problem, enhancing computational efficiency and demonstrating superior efficacy over traditional global observation methods.
Our hybrid AI framework synergizes RL with scripted agents, leveraging RL for high-level decisions and scripted agents for lower-level tasks, enhancing adaptability, reliability, and performance.
arXiv Detail & Related papers (2024-08-23T18:50:57Z) - Generative AI for Deep Reinforcement Learning: Framework, Analysis, and Use Cases [60.30995339585003]
Deep reinforcement learning (DRL) has been widely applied across various fields and has achieved remarkable accomplishments.
DRL faces certain limitations, including low sample efficiency and poor generalization.
We present how to leverage generative AI (GAI) to address these issues and enhance the performance of DRL algorithms.
arXiv Detail & Related papers (2024-05-31T01:25:40Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
Reinforcement learning integrated as a component in the evolutionary algorithm has demonstrated superior performance in recent years.
We discuss the RL-EA integration method, the RL-assisted strategy adopted by RL-EA, and its applications according to the existing literature.
In the applications of RL-EA section, we also demonstrate the excellent performance of RL-EA on several benchmarks and a range of public datasets.
arXiv Detail & Related papers (2023-08-25T15:06:05Z) - The RL Perceptron: Generalisation Dynamics of Policy Learning in High
Dimensions [14.778024171498208]
Reinforcement learning algorithms have proven transformative in a range of domains.
Much theory of RL has focused on discrete state spaces or worst-case analysis.
We propose a solvable high-dimensional model of RL that can capture a variety of learning protocols.
arXiv Detail & Related papers (2023-06-17T18:16:51Z) - Adaptive action supervision in reinforcement learning from real-world
multi-agent demonstrations [10.174009792409928]
We propose a method for adaptive action supervision in RL from real-world demonstrations in multi-agent scenarios.
In the experiments, using chase-and-escape and football tasks with the different dynamics between the unknown source and target environments, we show that our approach achieved a balance between the generalization and the generalization ability compared with the baselines.
arXiv Detail & Related papers (2023-05-22T13:33:37Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Improving Generalization of Deep Reinforcement Learning-based TSP
Solvers [19.29028564568974]
We propose a novel approach named MAGIC that includes a deep learning architecture and a DRL training method.
Our architecture, which integrates a multilayer perceptron, a graph neural network, and an attention model, defines a policy that sequentially generates a traveling salesman solution.
Our training method includes several innovations: (1) we interleave DRL policy updates with local search (using a new local search technique), (2) we use a novel simple baseline, and (3) we apply gradient learning.
arXiv Detail & Related papers (2021-10-06T15:16:19Z) - Scenic4RL: Programmatic Modeling and Generation of Reinforcement
Learning Environments [89.04823188871906]
Generation of diverse realistic scenarios is challenging for real-time strategy (RTS) environments.
Most of the existing simulators rely on randomly generating the environments.
We introduce the benefits of adopting an existing formal scenario specification language, SCENIC, to assist researchers.
arXiv Detail & Related papers (2021-06-18T21:49:46Z) - The AI Arena: A Framework for Distributed Multi-Agent Reinforcement
Learning [0.3437656066916039]
We introduce the AI Arena: a scalable framework with flexible abstractions for distributed multi-agent reinforcement learning.
We show performance gains due to a distributed multi-agent learning approach over commonly-used RL techniques in several different learning environments.
arXiv Detail & Related papers (2021-03-09T22:16:19Z) - Offline Reinforcement Learning from Images with Latent Space Models [60.69745540036375]
offline reinforcement learning (RL) refers to the problem of learning policies from a static dataset of environment interactions.
We build on recent advances in model-based algorithms for offline RL, and extend them to high-dimensional visual observation spaces.
Our approach is both tractable in practice and corresponds to maximizing a lower bound of the ELBO in the unknown POMDP.
arXiv Detail & Related papers (2020-12-21T18:28:17Z) - Forgetful Experience Replay in Hierarchical Reinforcement Learning from
Demonstrations [55.41644538483948]
In this paper, we propose a combination of approaches that allow the agent to use low-quality demonstrations in complex vision-based environments.
Our proposed goal-oriented structuring of replay buffer allows the agent to automatically highlight sub-goals for solving complex hierarchical tasks in demonstrations.
The solution based on our algorithm beats all the solutions for the famous MineRL competition and allows the agent to mine a diamond in the Minecraft environment.
arXiv Detail & Related papers (2020-06-17T15:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.