Mastering the Digital Art of War: Developing Intelligent Combat Simulation Agents for Wargaming Using Hierarchical Reinforcement Learning
- URL: http://arxiv.org/abs/2408.13333v1
- Date: Fri, 23 Aug 2024 18:50:57 GMT
- Title: Mastering the Digital Art of War: Developing Intelligent Combat Simulation Agents for Wargaming Using Hierarchical Reinforcement Learning
- Authors: Scotty Black,
- Abstract summary: dissertation proposes a comprehensive approach, including targeted observation abstractions, multi-model integration, a hybrid AI framework, and an overarching hierarchical reinforcement learning framework.
Our localized observation abstraction using piecewise linear spatial decay simplifies the RL problem, enhancing computational efficiency and demonstrating superior efficacy over traditional global observation methods.
Our hybrid AI framework synergizes RL with scripted agents, leveraging RL for high-level decisions and scripted agents for lower-level tasks, enhancing adaptability, reliability, and performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In today's rapidly evolving military landscape, advancing artificial intelligence (AI) in support of wargaming becomes essential. Despite reinforcement learning (RL) showing promise for developing intelligent agents, conventional RL faces limitations in handling the complexity inherent in combat simulations. This dissertation proposes a comprehensive approach, including targeted observation abstractions, multi-model integration, a hybrid AI framework, and an overarching hierarchical reinforcement learning (HRL) framework. Our localized observation abstraction using piecewise linear spatial decay simplifies the RL problem, enhancing computational efficiency and demonstrating superior efficacy over traditional global observation methods. Our multi-model framework combines various AI methodologies, optimizing performance while still enabling the use of diverse, specialized individual behavior models. Our hybrid AI framework synergizes RL with scripted agents, leveraging RL for high-level decisions and scripted agents for lower-level tasks, enhancing adaptability, reliability, and performance. Our HRL architecture and training framework decomposes complex problems into manageable subproblems, aligning with military decision-making structures. Although initial tests did not show improved performance, insights were gained to improve future iterations. This study underscores AI's potential to revolutionize wargaming, emphasizing the need for continued research in this domain.
Related papers
- Scaling Intelligent Agents in Combat Simulations for Wargaming [0.0]
Deep reinforcement learning (RL) continues to show promising results in intelligent agent behavior development in games.
Our research is investigating and extending the use of HRL to create intelligent agents capable of performing effectively in large and complex simulation environments.
Our ultimate goal is to develop an agent capable of superhuman performance that could then serve as an AI advisor to military planners and decision-makers.
arXiv Detail & Related papers (2024-02-08T21:57:10Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
Reinforcement learning integrated as a component in the evolutionary algorithm has demonstrated superior performance in recent years.
We discuss the RL-EA integration method, the RL-assisted strategy adopted by RL-EA, and its applications according to the existing literature.
In the applications of RL-EA section, we also demonstrate the excellent performance of RL-EA on several benchmarks and a range of public datasets.
arXiv Detail & Related papers (2023-08-25T15:06:05Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Robust Reinforcement Learning as a Stackelberg Game via
Adaptively-Regularized Adversarial Training [43.97565851415018]
Robust Reinforcement Learning (RL) focuses on improving performances under model errors or adversarial attacks.
Most of the existing literature models RARL as a zero-sum simultaneous game with Nash equilibrium as the solution concept.
We introduce a novel hierarchical formulation of robust RL - a general-sum Stackelberg game model called RRL-Stack.
arXiv Detail & Related papers (2022-02-19T03:44:05Z) - Autonomous Reinforcement Learning: Formalism and Benchmarking [106.25788536376007]
Real-world embodied learning, such as that performed by humans and animals, is situated in a continual, non-episodic world.
Common benchmark tasks in RL are episodic, with the environment resetting between trials to provide the agent with multiple attempts.
This discrepancy presents a major challenge when attempting to take RL algorithms developed for episodic simulated environments and run them on real-world platforms.
arXiv Detail & Related papers (2021-12-17T16:28:06Z) - Room Clearance with Feudal Hierarchical Reinforcement Learning [2.867517731896504]
We introduce a new simulation environment, "it", designed as a tool to build scenarios that can drive RL research in a direction useful for military analysis.
We focus on an abstracted and simplified room clearance scenario, where a team of blue agents have to make their way through a building and ensure that all rooms are cleared of enemy red agents.
We implement a multi-agent version of feudal hierarchical RL that introduces a command hierarchy where a commander at the higher level sends orders to multiple agents at the lower level who simply have to learn to follow these orders.
We find that breaking the task down in this way allows us to
arXiv Detail & Related papers (2021-05-24T15:05:58Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
In real-world tasks, reinforcement learning agents encounter situations that are not present during training time.
To ensure reliable performance, the RL agents need to exhibit robustness against worst-case situations.
We propose the Robust Hallucinated Upper-Confidence RL (RH-UCRL) algorithm to provably solve this problem.
arXiv Detail & Related papers (2021-03-18T16:50:17Z) - The AI Arena: A Framework for Distributed Multi-Agent Reinforcement
Learning [0.3437656066916039]
We introduce the AI Arena: a scalable framework with flexible abstractions for distributed multi-agent reinforcement learning.
We show performance gains due to a distributed multi-agent learning approach over commonly-used RL techniques in several different learning environments.
arXiv Detail & Related papers (2021-03-09T22:16:19Z) - Forgetful Experience Replay in Hierarchical Reinforcement Learning from
Demonstrations [55.41644538483948]
In this paper, we propose a combination of approaches that allow the agent to use low-quality demonstrations in complex vision-based environments.
Our proposed goal-oriented structuring of replay buffer allows the agent to automatically highlight sub-goals for solving complex hierarchical tasks in demonstrations.
The solution based on our algorithm beats all the solutions for the famous MineRL competition and allows the agent to mine a diamond in the Minecraft environment.
arXiv Detail & Related papers (2020-06-17T15:38:40Z) - The Adversarial Resilience Learning Architecture for AI-based Modelling,
Exploration, and Operation of Complex Cyber-Physical Systems [0.0]
We describe the concept of Adversarial Learning (ARL) that formulates a new approach to complex environment checking and resilient operation.
The quintessence of ARL lies in both agents exploring the system and training each other without any domain knowledge.
Here, we introduce the ARL software architecture that allows to use a wide range of model-free as well as model-based DRL-based algorithms.
arXiv Detail & Related papers (2020-05-27T19:19:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.