論文の概要: L^2UWE: A Framework for the Efficient Enhancement of Low-Light
Underwater Images Using Local Contrast and Multi-Scale Fusion
- arxiv url: http://arxiv.org/abs/2005.13736v2
- Date: Thu, 5 Nov 2020 21:26:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-27 05:20:37.824043
- Title: L^2UWE: A Framework for the Efficient Enhancement of Low-Light
Underwater Images Using Local Contrast and Multi-Scale Fusion
- Title(参考訳): L^2UWE:局所コントラストとマルチスケール融合を用いた水中低光画像の高効率化のためのフレームワーク
- Authors: Tunai Porto Marques, Alexandra Branzan Albu
- Abstract要約: そこで本研究では,局所コントラスト情報から大気光の効率的なモデルが導出可能であるという観測結果に基づいて,単一画像の低照度水中画像エンハンサーL2UWEを提案する。
これらの画像を組み合わせて、高輝度、高輝度、局所コントラストの領域を強調しながら、マルチスケールの融合プロセスを用いる。
水中および低照度シーンに特有な7つの最先端拡張手法に対して,7つの指標を用いてL2UWEの性能を実証した。
- 参考スコア(独自算出の注目度): 84.11514688735183
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Images captured underwater often suffer from suboptimal illumination settings
that can hide important visual features, reducing their quality. We present a
novel single-image low-light underwater image enhancer, L^2UWE, that builds on
our observation that an efficient model of atmospheric lighting can be derived
from local contrast information. We create two distinct models and generate two
enhanced images from them: one that highlights finer details, the other focused
on darkness removal. A multi-scale fusion process is employed to combine these
images while emphasizing regions of higher luminance, saliency and local
contrast. We demonstrate the performance of L^2UWE by using seven metrics to
test it against seven state-of-the-art enhancement methods specific to
underwater and low-light scenes. Code available at:
https://github.com/tunai/l2uwe.
- Abstract(参考訳): 水中で撮影された画像は、重要な視覚特徴を隠して品質を低下させる、最適の照明設定に苦しむことが多い。
本研究では,大気照明の効率的なモデルが局所的なコントラスト情報から得られるという観測に基づく,新しい水中低光画像エンハンサーl^2uweを提案する。
私たちは2つの異なるモデルを作成し、2つの強化されたイメージを生成します。
これらの画像を組み合わせて、高輝度、高輝度、局所コントラストの領域を強調しながら、マルチスケールの融合プロセスを用いる。
水中および低照度シーンに特有の7つの技術拡張手法に対して,7つの指標を用いてL^2UWEの性能を実証した。
コードはhttps://github.com/tunai/l2uwe。
関連論文リスト
- Dual High-Order Total Variation Model for Underwater Image Restoration [13.789310785350484]
水中画像の高画質化と復元(UIER)は,水中画像の画質向上のための重要な手段である。
拡張水中画像形成モデル(UIFM)に基づく効果的な変分フレームワークを提案する。
提案フレームワークでは,重み係数に基づく色補正とカラーバランスを組み合わせることで,減衰した色チャネルを補償し,色キャストを除去する。
論文 参考訳(メタデータ) (2024-07-20T13:06:37Z) - You Only Need One Color Space: An Efficient Network for Low-light Image Enhancement [50.37253008333166]
低照度画像強調(LLIE)タスクは、劣化した低照度画像から詳細と視覚情報を復元する傾向がある。
水平/垂直インテンシティ(HVI)と呼ばれる新しいトレーニング可能なカラー空間を提案する。
輝度と色をRGBチャネルから切り離して、拡張中の不安定性を緩和するだけでなく、トレーニング可能なパラメータによって異なる照明範囲の低照度画像にも適応する。
論文 参考訳(メタデータ) (2024-02-08T16:47:43Z) - A Non-Uniform Low-Light Image Enhancement Method with Multi-Scale
Attention Transformer and Luminance Consistency Loss [11.585269110131659]
低照度画像強調は、薄暗い環境で収集された画像の知覚を改善することを目的としている。
既存の方法では、識別された輝度情報を適応的に抽出することができず、露光過多や露光過多を容易に引き起こすことができる。
MSATrというマルチスケールアテンション変換器を提案し,光バランスの局所的・グローバル的特徴を十分に抽出し,視覚的品質を向上させる。
論文 参考訳(メタデータ) (2023-12-27T10:07:11Z) - Diving into Darkness: A Dual-Modulated Framework for High-Fidelity
Super-Resolution in Ultra-Dark Environments [51.58771256128329]
本稿では,低照度超解像課題の性質を深く理解しようとする,特殊二変調学習フレームワークを提案する。
Illuminance-Semantic Dual Modulation (ISDM) コンポーネントを開発した。
包括的実験は、我々のアプローチが多様で挑戦的な超低照度条件に適用可能であることを示す。
論文 参考訳(メタデータ) (2023-09-11T06:55:32Z) - Low-Light Video Enhancement with Synthetic Event Guidance [188.7256236851872]
我々は、複数のフレームから合成イベントを使用して、低照度ビデオの強化と復元を誘導する。
本手法は,合成と実の両方のLLVEデータセットにおいて,既存の低照度映像や単一画像強調手法より優れる。
論文 参考訳(メタデータ) (2022-08-23T14:58:29Z) - Decoupled Low-light Image Enhancement [21.111831640136835]
本稿では,拡張モデルを2つの段階に分離することを提案する。
第1ステージでは、ピクセル単位の非線形マッピングに基づいて、シーンの可視性を改善することに焦点を当てている。
第2段階は、残りの変性因子を抑えることにより、外観の忠実度を改善することに焦点を当てる。
論文 参考訳(メタデータ) (2021-11-29T11:15:38Z) - Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement [52.49231695707198]
2段階の工程で細部と色を精錬しながら、内在的な劣化と低照度画像を照らし出す。
カラー画像の定式化に触発されて,まず低照度入力からの劣化を推定し,環境照明色の歪みをシミュレーションし,そのコンテンツを精錬して拡散照明色の損失を回復した。
LOL1000データセットではPSNRで0.95dB、ExDarkデータセットでは3.18%のmAPでSOTAを上回った。
論文 参考訳(メタデータ) (2021-03-19T04:00:27Z) - Bridge the Vision Gap from Field to Command: A Deep Learning Network
Enhancing Illumination and Details [17.25188250076639]
我々は,明るさを調整し,細部を同時に強化する2ストリームフレームワークNEIDを提案する。
提案手法は,光強調 (LE), 細粒化 (DR), 特徴拡散 (FF) モジュールの3つの部分から構成される。
論文 参考訳(メタデータ) (2021-01-20T09:39:57Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
我々は、実世界の低照度画像を教師なしで拡張する2段階のGANベースのフレームワークを学習する。
提案手法は,照度向上と雑音低減の両面から,最先端の教師なし画像強調法より優れる。
論文 参考訳(メタデータ) (2020-05-06T13:37:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。