Assessing Centrality Without Knowing Connections
- URL: http://arxiv.org/abs/2005.13787v1
- Date: Thu, 28 May 2020 05:51:12 GMT
- Title: Assessing Centrality Without Knowing Connections
- Authors: Leyla Roohi, Benjamin I. P. Rubinstein and Vanessa Teague
- Abstract summary: Motivated by modern communication networks spanning multiple providers, we show for the first time how multiple mutually-distrusting parties can successfully compute node EBC.
A theoretical utility analysis upper bounds a primary source of private EBC error---private release of ego networks---with high probability.
- Score: 19.40833089993767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the privacy-preserving computation of node influence in
distributed social networks, as measured by egocentric betweenness centrality
(EBC). Motivated by modern communication networks spanning multiple providers,
we show for the first time how multiple mutually-distrusting parties can
successfully compute node EBC while revealing only differentially-private
information about their internal network connections. A theoretical utility
analysis upper bounds a primary source of private EBC error---private release
of ego networks---with high probability. Empirical results demonstrate
practical applicability with a low 1.07 relative error achievable at strong
privacy budget $\epsilon=0.1$ on a Facebook graph, and insignificant
performance degradation as the number of network provider parties grows.
Related papers
- Differentially Private Data Release on Graphs: Inefficiencies and Unfairness [48.96399034594329]
This paper characterizes the impact of Differential Privacy on bias and unfairness in the context of releasing information about networks.
We consider a network release problem where the network structure is known to all, but the weights on edges must be released privately.
Our work provides theoretical foundations and empirical evidence into the bias and unfairness arising due to privacy in these networked decision problems.
arXiv Detail & Related papers (2024-08-08T08:37:37Z) - Privacy Preserving Semi-Decentralized Mean Estimation over Intermittently-Connected Networks [59.43433767253956]
We consider the problem of privately estimating the mean of vectors distributed across different nodes of an unreliable wireless network.
In a semi-decentralized setup, nodes can collaborate with their neighbors to compute a local consensus, which they relay to a central server.
We study the tradeoff between collaborative relaying and privacy leakage due to the data sharing among nodes.
arXiv Detail & Related papers (2024-06-06T06:12:15Z) - Differentially Private Computation of Basic Reproduction Numbers in Networked Epidemic Models [3.1966459264817875]
We develop a framework to compute and release the reproduction number of a networked epidemic model in a differentially private way.
We show that, under real-world conditions, we can compute $R_0$ in a differentially private way while incurring errors as low as $7.6%$ on average.
arXiv Detail & Related papers (2023-09-29T14:38:02Z) - Blink: Link Local Differential Privacy in Graph Neural Networks via
Bayesian Estimation [79.64626707978418]
We propose using link local differential privacy over decentralized nodes to train graph neural networks.
Our approach spends the privacy budget separately on links and degrees of the graph for the server to better denoise the graph topology.
Our approach outperforms existing methods in terms of accuracy under varying privacy budgets.
arXiv Detail & Related papers (2023-09-06T17:53:31Z) - Collaborative Mean Estimation over Intermittently Connected Networks
with Peer-To-Peer Privacy [86.61829236732744]
This work considers the problem of Distributed Mean Estimation (DME) over networks with intermittent connectivity.
The goal is to learn a global statistic over the data samples localized across distributed nodes with the help of a central server.
We study the tradeoff between collaborative relaying and privacy leakage due to the additional data sharing among nodes.
arXiv Detail & Related papers (2023-02-28T19:17:03Z) - Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
We investigate the privacy-preserving joint edge association and power allocation problem.
The proposed solution strikes a compelling trade-off, while preserving a higher privacy level than the state-of-the-art solutions.
arXiv Detail & Related papers (2023-01-26T10:09:23Z) - Muffliato: Peer-to-Peer Privacy Amplification for Decentralized Optimization and Averaging [20.39986955578245]
We introduce pairwise network differential privacy, a relaxation of Local Differential Privacy (LDP)
We derive a differentially private decentralized optimization algorithm that alternates between local gradient descent steps and gossip averaging.
Our results show that our algorithms amplify privacy guarantees as a function of the distance between nodes in the graph.
arXiv Detail & Related papers (2022-06-10T13:32:35Z) - Large-Scale Privacy-Preserving Network Embedding against Private Link
Inference Attacks [12.434976161956401]
We address a novel problem of privacy-preserving network embedding against private link inference attacks.
We propose to perturb the original network by adding or removing links, and expect the embedding generated on the perturbed network can leak little information about private links but hold high utility for various downstream tasks.
arXiv Detail & Related papers (2022-05-28T13:59:39Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
We present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution.
Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.515% on BNNs.
Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods.
arXiv Detail & Related papers (2021-02-17T18:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.