Travel Time Prediction using Tree-Based Ensembles
- URL: http://arxiv.org/abs/2005.13818v1
- Date: Thu, 28 May 2020 07:43:54 GMT
- Title: Travel Time Prediction using Tree-Based Ensembles
- Authors: He Huang, Martin Pouls, Anne Meyer, and Markus Pauly
- Abstract summary: We consider the task of predicting travel times between two arbitrary points in an urban scenario.
We view this problem from two temporal perspectives: long-term forecasting with a horizon of several days and short-term forecasting with a horizon of one hour.
- Score: 4.74324101583772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we consider the task of predicting travel times between two
arbitrary points in an urban scenario. We view this problem from two temporal
perspectives: long-term forecasting with a horizon of several days and
short-term forecasting with a horizon of one hour. Both of these perspectives
are relevant for planning tasks in the context of urban mobility and
transportation services. We utilize tree-based ensemble methods that we train
and evaluate on a dataset of taxi trip records from New York City. Through
extensive data analysis, we identify relevant temporal and spatial features. We
also engineer additional features based on weather and routing data. The latter
is obtained via a routing solver operating on the road network. The
computational results show that the addition of this routing data can be
beneficial to the model performance. Moreover, employing different models for
short and long-term prediction is useful as short-term models are better suited
to mirror current traffic conditions. In fact, we show that accurate short-term
predictions may be obtained with only little training data.
Related papers
- HPNet: Dynamic Trajectory Forecasting with Historical Prediction Attention [76.37139809114274]
HPNet is a novel dynamic trajectory forecasting method.
We propose a Historical Prediction Attention module to automatically encode the dynamic relationship between successive predictions.
Our code is available at https://github.com/XiaolongTang23/HPNet.
arXiv Detail & Related papers (2024-04-09T14:42:31Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Similarity-based Feature Extraction for Large-scale Sparse Traffic
Forecasting [4.295541562380963]
The NeurIPS 2022 Traffic4cast challenge is dedicated to predicting the citywide traffic states with publicly available sparse loop count data.
This technical report introduces our second-place winning solution to the extended challenge of ETA prediction.
arXiv Detail & Related papers (2022-11-13T22:19:21Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
We propose a-temporal prediction network pipeline to generate future occupancy predictions.
Compared to current SOTA, our approach predicts occupancy for a longer horizon of 3 seconds.
We publicly release our grid occupancy dataset based on nulis to support further research.
arXiv Detail & Related papers (2022-05-06T13:45:32Z) - LTN: Long-Term Network for Long-Term Motion Prediction [0.0]
We present a two-stage framework for long-term trajectory prediction, which is named as Long-Term Network (LTN)
We first generate a set of proposed trajectories with our proposed distribution using a Conditional Variational Autoencoder (CVAE) and then classify them with binary labels, and output the trajectories with the highest score.
The results show that our method outperforms multiple state-of-the-art approaches in long-term trajectory prediction in terms of accuracy.
arXiv Detail & Related papers (2020-10-15T17:59:09Z) - Boosting Algorithms for Delivery Time Prediction in Transportation
Logistics [2.147325264113341]
We show that travel time prediction can help mitigate high delays in postal services.
Some boosting algorithms, such as light gradient boosting and catboost, have a higher performance in terms of accuracy and runtime efficiency.
arXiv Detail & Related papers (2020-09-24T11:01:22Z) - Graph modelling approaches for motorway traffic flow prediction [6.370406399003785]
This paper presents two new spatial-temporal approaches for building accurate short-term prediction along a popular motorway in Sydney.
The methods are built on proximity-based approaches, denoted backtracking and proximity, which uses the most recent and closest traffic flow information for each of the target counting stations along the motorway.
The results indicate that for short-term predictions (less than 10 minutes into the future), the proposed graph-based approaches outperform state-of-the-art deep learning models.
arXiv Detail & Related papers (2020-06-26T06:54:14Z) - Road Network Metric Learning for Estimated Time of Arrival [93.0759529610483]
In this paper, we propose the Road Network Metric Learning framework for Estimated Time of Arrival (ETA)
It consists of two components: (1) a main regression task to predict the travel time, and (2) an auxiliary metric learning task to improve the quality of link embedding vectors.
We show that our method outperforms the state-of-the-art model and the promotion concentrates on the cold links with few data.
arXiv Detail & Related papers (2020-06-24T04:45:14Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
We tackle the problem of joint perception and motion forecasting in the context of self-driving vehicles.
We propose Net, an end-to-end model that takes as input sensor data, and outputs at each time step object tracks and their future level.
arXiv Detail & Related papers (2020-05-29T17:57:25Z) - BusTime: Which is the Right Prediction Model for My Bus Arrival Time? [3.1761486589684975]
This paper tries to fill this gap by proposing a general and practical evaluation framework for analysing various widely used prediction models.
In particular, this framework contains a raw bus GPS data pre-processing method that needs much less number of input data points.
We also present preliminary results for city managers by analysing the practical strengths and weaknesses in both training and predicting stages of commonly used prediction models.
arXiv Detail & Related papers (2020-03-20T17:03:36Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
Reasoning over visual data is a desirable capability for robotics and vision-based applications.
In this paper, we present a framework on graph to uncover relationships in different objects in the scene for reasoning about pedestrian intent.
Pedestrian intent, defined as the future action of crossing or not-crossing the street, is a very crucial piece of information for autonomous vehicles.
arXiv Detail & Related papers (2020-02-20T18:50:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.