Similarity-based Feature Extraction for Large-scale Sparse Traffic
Forecasting
- URL: http://arxiv.org/abs/2211.07031v1
- Date: Sun, 13 Nov 2022 22:19:21 GMT
- Title: Similarity-based Feature Extraction for Large-scale Sparse Traffic
Forecasting
- Authors: Xinhua Wu, Cheng Lyu, Qing-Long Lu, Vishal Mahajan
- Abstract summary: The NeurIPS 2022 Traffic4cast challenge is dedicated to predicting the citywide traffic states with publicly available sparse loop count data.
This technical report introduces our second-place winning solution to the extended challenge of ETA prediction.
- Score: 4.295541562380963
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Short-term traffic forecasting is an extensively studied topic in the field
of intelligent transportation system. However, most existing forecasting
systems are limited by the requirement of real-time probe vehicle data because
of their formulation as a time series forecasting problem. Towards this issue,
the NeurIPS 2022 Traffic4cast challenge is dedicated to predicting the citywide
traffic states with publicly available sparse loop count data. This technical
report introduces our second-place winning solution to the extended challenge
of ETA prediction. We present a similarity-based feature extraction method
using multiple nearest neighbor (NN) filters. Similarity-based features, static
features, node flow features and combined features of segments are extracted
for training the gradient boosting decision tree model. Experimental results on
three cities (including London, Madrid and Melbourne) demonstrate the strong
predictive performance of our approach, which outperforms a number of
graph-neural-network-based solutions in the task of travel time estimation. The
source code is available at
\url{https://github.com/c-lyu/Traffic4Cast2022-TSE}.
Related papers
- OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Unveiling Delay Effects in Traffic Forecasting: A Perspective from
Spatial-Temporal Delay Differential Equations [20.174094418301245]
Traffic flow forecasting is a fundamental research issue for transportation planning and management.
In recent years, Graph Neural Networks (GNNs) and Recurrent Neural Networks (RNNs) have achieved great success in capturing spatial-temporal correlations for traffic flow forecasting.
However, two non-ignorable issues haven't been well solved: 1) The message passing in GNNs is immediate, while in reality the spatial message interactions among neighboring nodes can be delayed.
arXiv Detail & Related papers (2024-02-02T08:55:23Z) - Spatio-Temporal Graph Neural Point Process for Traffic Congestion Event
Prediction [16.530361912832763]
We propose a temporal graph neural point process framework, named STNPP, for traffic congestion event prediction.
Our method achieves superior performance in comparison to existing state-of-the-art approaches.
arXiv Detail & Related papers (2023-11-15T01:22:47Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
We introduce a benchmark that queries future trajectories on streaming data and we refer to it as "streaming forecasting"
Our benchmark inherently captures the disappearance and re-appearance of agents, which is a safety-critical problem yet overlooked by snapshot-based benchmarks.
We propose a plug-and-play meta-algorithm called "Predictive Streamer" that can adapt any snapshot-based forecaster into a streaming forecaster.
arXiv Detail & Related papers (2023-10-02T17:13:16Z) - HUTFormer: Hierarchical U-Net Transformer for Long-Term Traffic
Forecasting [13.49661832917228]
We make the first attempt to explore long-term traffic forecasting, e.g., 1-day forecasting.
We propose a novel Hierarchical U-net TransFormer to address the issues of long-term traffic forecasting.
The proposed HUTFormer significantly outperforms state-of-the-art traffic forecasting and long time series forecasting baselines.
arXiv Detail & Related papers (2023-07-27T02:43:21Z) - An Efficient Two-stage Gradient Boosting Framework for Short-term
Traffic State Estimation [4.0248751151060596]
The NeurIPS 2022 Traffic4cast challenge provides an excellent testbed for benchmarking short-term traffic state estimation approaches.
We present an efficient two-stage gradient boosting framework for short-term traffic state estimation.
arXiv Detail & Related papers (2023-02-21T02:20:01Z) - Complex Event Forecasting with Prediction Suffix Trees: Extended
Technical Report [70.7321040534471]
Complex Event Recognition (CER) systems have become popular in the past two decades due to their ability to "instantly" detect patterns on real-time streams of events.
There is a lack of methods for forecasting when a pattern might occur before such an occurrence is actually detected by a CER engine.
We present a formal framework that attempts to address the issue of Complex Event Forecasting.
arXiv Detail & Related papers (2021-09-01T09:52:31Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
This paper proposes a traffic propagation model that merges multiple heat diffusion kernels into a data-driven prediction model to forecast traffic signals.
We optimize the model parameters using Bayesian inference to minimize the prediction errors and, consequently, determine the mixing ratio of the two approaches.
The proposed model demonstrates prediction accuracy comparable to that of the state-of-the-art deep neural networks with lower computational effort.
arXiv Detail & Related papers (2021-04-27T18:17:42Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - Short-Term Traffic Forecasting Using High-Resolution Traffic Data [2.0625936401496237]
This paper develops a data-driven toolkit for traffic forecasting using high-resolution (a.k.a. event-based) traffic data.
The proposed methods are verified using high-resolution data obtained from a real-world traffic network in Abu Dhabi, UAE.
arXiv Detail & Related papers (2020-06-22T14:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.