A Normalized Fully Convolutional Approach to Head and Neck Cancer
Outcome Prediction
- URL: http://arxiv.org/abs/2005.14017v2
- Date: Fri, 29 May 2020 14:31:06 GMT
- Title: A Normalized Fully Convolutional Approach to Head and Neck Cancer
Outcome Prediction
- Authors: William Le, Francisco Perdig\'on Romero, Samuel Kadoury
- Abstract summary: In this work, we apply a CNN classification network augmented with a FCN preprocessor sub-network to a public TCIA head and neck cancer dataset.
We show that the preprocessor sub-network in conjunction with aggregated residual connection leads to improvements over state-of-the-art results when combining both CT and PET input images.
- Score: 2.5690340428649323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In medical imaging, radiological scans of different modalities serve to
enhance different sets of features for clinical diagnosis and treatment
planning. This variety enriches the source information that could be used for
outcome prediction. Deep learning methods are particularly well-suited for
feature extraction from high-dimensional inputs such as images. In this work,
we apply a CNN classification network augmented with a FCN preprocessor
sub-network to a public TCIA head and neck cancer dataset. The training goal is
survival prediction of radiotherapy cases based on pre-treatment FDG PET-CT
scans, acquired across 4 different hospitals. We show that the preprocessor
sub-network in conjunction with aggregated residual connection leads to
improvements over state-of-the-art results when combining both CT and PET input
images.
Related papers
- Integrating Preprocessing Methods and Convolutional Neural Networks for
Effective Tumor Detection in Medical Imaging [0.0]
This research presents a machine-learning approach for tumor detection in medical images using convolutional neural networks (CNNs)
The study focuses on preprocessing techniques to enhance image features relevant to tumor detection, followed by developing and training a CNN model for accurate classification.
Experimental results demonstrate the effectiveness of the proposed approach in accurately detecting tumors in medical images.
arXiv Detail & Related papers (2024-02-25T23:49:05Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Graph-based multimodal multi-lesion DLBCL treatment response prediction
from PET images [0.0]
After diagnosis, the number of nonresponding patients to standard front-line therapy remains significant (30-40%)
This work aims to develop a computer-aided approach to identify high-risk patients requiring adapted treatment.
We propose a method based on recent graph neural networks that combine imaging information from multiple lesions.
arXiv Detail & Related papers (2023-10-25T08:16:45Z) - Merging-Diverging Hybrid Transformer Networks for Survival Prediction in
Head and Neck Cancer [10.994223928445589]
We propose a merging-diverging learning framework for survival prediction from multi-modality images.
This framework has a merging encoder to fuse multi-modality information and a diverging decoder to extract region-specific information.
Our framework is demonstrated on survival prediction from PET-CT images in Head and Neck (H&N) cancer.
arXiv Detail & Related papers (2023-07-07T07:16:03Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - Generative Models Improve Radiomics Performance in Different Tasks and
Different Datasets: An Experimental Study [3.040206021972938]
Radiomics is an area of research focusing on high throughput feature extraction from medical images.
Generative models can improve the performance of low dose CT-based radiomics in different tasks.
arXiv Detail & Related papers (2021-09-06T06:01:21Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z) - Experimenting with Convolutional Neural Network Architectures for the
automatic characterization of Solitary Pulmonary Nodules' malignancy rating [0.0]
Early and automatic diagnosis of Solitary Pulmonary Nodules (SPN) in Computer Tomography (CT) chest scans can provide early treatment as well as doctor liberation from time-consuming procedures.
In this study, we consider the problem of diagnostic classification between benign and malignant lung nodules in CT images derived from a PET/CT scanner.
More specifically, we intend to develop experimental Convolutional Neural Network (CNN) architectures and conduct experiments, by tuning their parameters, to investigate their behavior, and to define the optimal setup for the accurate classification.
arXiv Detail & Related papers (2020-03-15T11:46:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.