CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images
- URL: http://arxiv.org/abs/2111.08710v1
- Date: Tue, 16 Nov 2021 15:03:42 GMT
- Title: CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images
- Authors: Azael M. Sousa, Fabiano Reis, Rachel Zerbini, Jo\~ao L. D. Comba and
Alexandre X. Falc\~ao
- Abstract summary: We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
- Score: 58.720142291102135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early detection of COVID-19 is vital to control its spread. Deep learning
methods have been presented to detect suggestive signs of COVID-19 from chest
CT images. However, due to the novelty of the disease, annotated volumetric
data are scarce. Here we propose a method that does not require either large
annotated datasets or backpropagation to estimate the filters of a
convolutional neural network (CNN). For a few CT images, the user draws markers
at representative normal and abnormal regions. The method generates a feature
extractor composed of a sequence of convolutional layers, whose kernels are
specialized in enhancing regions similar to the marked ones, and the decision
layer of our CNN is a support vector machine. As we have no control over the CT
image acquisition, we also propose an intensity standardization approach. Our
method can achieve mean accuracy and kappa values of $0.97$ and $0.93$,
respectively, on a dataset with 117 CT images extracted from different sites,
surpassing its counterpart in all scenarios.
Related papers
- COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19
from Chest CT Images Through Bigger, More Diverse Learning [70.92379567261304]
We introduce COVID-Net CT-2, enhanced deep neural networks for COVID-19 detection from chest CT images.
We leverage explainability to investigate the decision-making behaviour of COVID-Net CT-2.
Results are promising and suggest the strong potential of deep neural networks as an effective tool for computer-aided COVID-19 assessment.
arXiv Detail & Related papers (2021-01-19T03:04:09Z) - Classification and Region Analysis of COVID-19 Infection using Lung CT
Images and Deep Convolutional Neural Networks [0.8224695424591678]
This work proposes a two-stage deep Convolutional Neural Networks (CNNs) based framework for delineation of COVID-19 infected regions in Lung CT images.
In the first stage, COVID-19 specific CT image features are enhanced using a two-level discrete wavelet transformation.
These enhanced CT images are then classified using the proposed custom-made deep CoV-CTNet.
In the second stage, the CT images classified as infectious images are provided to the segmentation models for the identification and analysis of COVID-19 infectious regions.
arXiv Detail & Related papers (2020-09-16T02:28:46Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Label-Free Segmentation of COVID-19 Lesions in Lung CT [17.639558085838583]
We present a label-free approach for segmenting COVID-19 lesions in CT via pixel-level anomaly modeling.
Our modeling is inspired by the observation that the parts of tracheae and vessels, which lay in the high-intensity range where lesions belong, exhibit strong patterns.
Our experiments on three different datasets validate the effectiveness of NormNet.
arXiv Detail & Related papers (2020-09-08T12:38:34Z) - Automated Chest CT Image Segmentation of COVID-19 Lung Infection based
on 3D U-Net [0.0]
The coronavirus disease 2019 (COVID-19) affects billions of lives around the world and has a significant impact on public healthcare.
We propose an innovative automated segmentation pipeline for COVID-19 infected regions.
Our method focuses on on-the-fly generation of unique and random image patches for training by performing several preprocessing methods.
arXiv Detail & Related papers (2020-06-24T17:29:26Z) - Automated Detection of COVID-19 from CT Scans Using Convolutional Neural
Networks [0.0]
COVID-19 is an infectious disease that causes respiratory problems similar to those caused by SARS-CoV 2003.
We build a 2D segmentation model using the U-Net architecture, which gives the output by marking out the region of infection.
arXiv Detail & Related papers (2020-06-23T06:50:41Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
We propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images.
We evaluate our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)
arXiv Detail & Related papers (2020-05-07T06:00:02Z) - Deep Learning for Screening COVID-19 using Chest X-Ray Images [0.2062593640149623]
We propose a new concept called domain extension transfer learning (DETL) to train deep neural networks.
We employ DETL, with pre-trained deep convolutional neural network, on a related large chest X-Ray dataset.
A 5-fold cross validation is performed to estimate the feasibility of using chest X-Rays to diagnose COVID-19.
arXiv Detail & Related papers (2020-04-22T11:41:50Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.