Codebook-Based Beam Tracking for Conformal ArrayEnabled UAV MmWave Networks
- URL: http://arxiv.org/abs/2005.14064v2
- Date: Mon, 8 Apr 2024 07:15:19 GMT
- Title: Codebook-Based Beam Tracking for Conformal ArrayEnabled UAV MmWave Networks
- Authors: Jinglin Zhang, Wenjun Xu, Hui Gao, Miao Pan, Zhu Han, Ping Zhang,
- Abstract summary: Millimeter wave (mmWave) communications can potentially meet the high data-rate requirements of unmanned aerial vehicle (UAV) networks.
As the prerequisite of mmWave communications, the narrow directional beam tracking is very challenging because of the three-dimensional (3D) mobility and attitude variation of UAVs.
We propose to integrate the conformal array with the surface of each UAV, which enables the full spatial coverage and the agile beam tracking in highly dynamic UAV mmWave networks.
- Score: 33.52271582081627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Millimeter wave (mmWave) communications can potentially meet the high data-rate requirements of unmanned aerial vehicle (UAV) networks. However, as the prerequisite of mmWave communications, the narrow directional beam tracking is very challenging because of the three-dimensional (3D) mobility and attitude variation of UAVs. Aiming to address the beam tracking difficulties, we propose to integrate the conformal array (CA) with the surface of each UAV, which enables the full spatial coverage and the agile beam tracking in highly dynamic UAV mmWave networks. More specifically, the key contributions of our work are three-fold. 1) A new mmWave beam tracking framework is established for the CA-enabled UAV mmWave network. 2) A specialized hierarchical codebook is constructed to drive the directional radiating element (DRE)-covered cylindrical conformal array (CCA), which contains both the angular beam pattern and the subarray pattern to fully utilize the potential of the CA. 3) A codebook-based multiuser beam tracking scheme is proposed, where the Gaussian process machine learning enabled UAV position/attitude predication is developed to improve the beam tracking efficiency in conjunction with the tracking-error aware adaptive beamwidth control. Simulation results validate the effectiveness of the proposed codebook-based beam tracking scheme in the CA-enabled UAV mmWave network, and demonstrate the advantages of CA over the conventional planner array in terms of spectrum efficiency and outage probability in the highly dynamic scenarios.
Related papers
- UAV Virtual Antenna Array Deployment for Uplink Interference Mitigation in Data Collection Networks [71.23793087286703]
Unmanned aerial vehicles (UAVs) have gained considerable attention as a platform for establishing aerial wireless networks and communications.
This paper explores a novel uplink interference mitigation approach based on the collaborative beamforming (CB) method in multi-UAV network systems.
arXiv Detail & Related papers (2024-12-09T12:56:50Z) - Dual UAV Cluster-Assisted Maritime Physical Layer Secure Communications via Collaborative Beamforming [47.191944685913036]
Unmanned aerial vehicles (UAVs) can be utilized as relay platforms to assist maritime wireless communications.
Collaborative beamforming (CB) can enhance the signal strength and range to assist the UAV relay for remote maritime communications.
This paper proposes a dual UAV cluster-assisted system via CB to achieve physical layer security in maritime wireless communications.
arXiv Detail & Related papers (2024-12-08T14:11:02Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Fairness-Driven Optimization of RIS-Augmented 5G Networks for Seamless
3D UAV Connectivity Using DRL Algorithms [8.296140341710462]
We study the problem of joint active and passive beamforming for reconfigurable intelligent surface (RIS)-assisted massive multiple-input multiple-output systems.
We propose two novel algorithms to address this problem.
arXiv Detail & Related papers (2023-11-14T06:43:36Z) - Hybrid Knowledge-Data Driven Channel Semantic Acquisition and
Beamforming for Cell-Free Massive MIMO [6.010360758759109]
This paper focuses on advancing outdoor wireless systems to better support ubiquitous extended reality (XR) applications.
We propose a hybrid knowledge-data driven method for channel semantic acquisition and multi-user beamforming in cell-free massive multiple-input multiple-output (MIMO) systems.
arXiv Detail & Related papers (2023-07-06T15:35:55Z) - UAV Trajectory and Multi-User Beamforming Optimization for Clustered
Users Against Passive Eavesdropping Attacks With Unknown CSI [3.326320568999945]
This paper tackles the fundamental passive eavesdropping problem in modern wireless communications in which the location and the channel state information (CSI) of the attackers are unknown.
We propose deploying an unmanned aerial vehicle (UAV) that serves as a mobile aerial relay (AR) to help ground base station (GBS) support a subset of vulnerable users.
arXiv Detail & Related papers (2023-06-11T14:01:15Z) - Joint Optimization of Deployment and Trajectory in UAV and IRS-Assisted
IoT Data Collection System [25.32139119893323]
Unmanned aerial vehicles (UAVs) can be applied in many Internet of Things (IoT) systems.
The UAV-IoT wireless channels may be occasionally blocked by trees or high-rise buildings.
This article aims to minimize the energy consumption of the system by jointly optimizing the deployment and trajectory of the UAV.
arXiv Detail & Related papers (2022-10-27T06:27:40Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - Distributed Conditional Generative Adversarial Networks (GANs) for
Data-Driven Millimeter Wave Communications in UAV Networks [116.94802388688653]
A novel framework is proposed to perform data-driven air-to-ground (A2G) channel estimation for millimeter wave (mmWave) communications in an unmanned aerial vehicle (UAV) wireless network.
An effective channel estimation approach is developed, allowing each UAV to train a stand-alone channel model via a conditional generative adversarial network (CGAN) along each beamforming direction.
A cooperative framework, based on a distributed CGAN architecture, is developed, allowing each UAV to collaboratively learn the mmWave channel distribution.
arXiv Detail & Related papers (2021-02-02T20:56:46Z) - Multi-Agent Reinforcement Learning in NOMA-aided UAV Networks for
Cellular Offloading [59.32570888309133]
A novel framework is proposed for cellular offloading with the aid of multiple unmanned aerial vehicles (UAVs)
Non-orthogonal multiple access (NOMA) technique is employed at each UAV to further improve the spectrum efficiency of the wireless network.
A mutual deep Q-network (MDQN) algorithm is proposed to jointly determine the optimal 3D trajectory and power allocation of UAVs.
arXiv Detail & Related papers (2020-10-18T20:22:05Z) - NOMA in UAV-aided cellular offloading: A machine learning approach [59.32570888309133]
A novel framework is proposed for cellular offloading with the aid of multiple unmanned aerial vehicles (UAVs)
Non-orthogonal multiple access (NOMA) technique is employed at each UAV to further improve the spectrum efficiency of the wireless network.
A mutual deep Q-network (MDQN) algorithm is proposed to jointly determine the optimal 3D trajectory and power allocation of UAVs.
arXiv Detail & Related papers (2020-10-18T17:38:48Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
Unmanned aerial vehicle (UAV) swarms must exploit machine learning (ML) in order to execute various tasks.
In this paper, a novel framework is proposed to implement distributed learning (FL) algorithms within a UAV swarm.
arXiv Detail & Related papers (2020-02-19T14:04:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.