Dual UAV Cluster-Assisted Maritime Physical Layer Secure Communications via Collaborative Beamforming
- URL: http://arxiv.org/abs/2412.05949v1
- Date: Sun, 08 Dec 2024 14:11:02 GMT
- Title: Dual UAV Cluster-Assisted Maritime Physical Layer Secure Communications via Collaborative Beamforming
- Authors: Jiawei Huang, Aimin Wang, Geng Sun, Jiahui Li, Jiacheng Wang, Hongyang Du, Dusit Niyato,
- Abstract summary: Unmanned aerial vehicles (UAVs) can be utilized as relay platforms to assist maritime wireless communications.
Collaborative beamforming (CB) can enhance the signal strength and range to assist the UAV relay for remote maritime communications.
This paper proposes a dual UAV cluster-assisted system via CB to achieve physical layer security in maritime wireless communications.
- Score: 47.191944685913036
- License:
- Abstract: Unmanned aerial vehicles (UAVs) can be utilized as relay platforms to assist maritime wireless communications. However, complex channels and multipath effects at sea can adversely affect the quality of UAV transmitted signals. Collaborative beamforming (CB) can enhance the signal strength and range to assist the UAV relay for remote maritime communications. However, due to the open nature of UAV channels, security issue requires special consideration. This paper proposes a dual UAV cluster-assisted system via CB to achieve physical layer security in maritime wireless communications. Specifically, one UAV cluster forms a maritime UAV-enabled virtual antenna array (MUVAA) relay to forward data signals to the remote legitimate vessel, and the other UAV cluster forms an MUVAA jammer to send jamming signals to the remote eavesdropper. In this system, we formulate a secure and energy-efficient maritime communication multi-objective optimization problem (SEMCMOP) to maximize the signal-to-interference-plus-noise ratio (SINR) of the legitimate vessel, minimize the SINR of the eavesdropping vessel and minimize the total flight energy consumption of UAVs. Since the SEMCMOP is an NP-hard and large-scale optimization problem, we propose an improved swarm intelligence optimization algorithm with chaotic solution initialization and hybrid solution update strategies to solve the problem. Simulation results indicate that the proposed algorithm outperforms other comparison algorithms, and it can achieve more efficient signal transmission by using the CB-based method.
Related papers
- Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
Low Earth Orbit (LEO) satellites can be used to assist maritime wireless communications for data transmission across wide-ranging areas.
Extensive coverage of LEO satellites, combined with openness of channels, can cause the communication process to suffer from security risks.
This paper presents a low-altitude friendly-jamming LEO satellite-maritime communication system enabled by a unmanned aerial vehicle.
arXiv Detail & Related papers (2025-01-26T10:13:51Z) - UAV Virtual Antenna Array Deployment for Uplink Interference Mitigation in Data Collection Networks [71.23793087286703]
Unmanned aerial vehicles (UAVs) have gained considerable attention as a platform for establishing aerial wireless networks and communications.
This paper explores a novel uplink interference mitigation approach based on the collaborative beamforming (CB) method in multi-UAV network systems.
arXiv Detail & Related papers (2024-12-09T12:56:50Z) - Movable Antenna-Equipped UAV for Data Collection in Backscatter Sensor Networks: A Deep Reinforcement Learning-based Approach [10.115361454176773]
Unmanned aerial vehicles (UAVs) enable flexible data collection from remote backscatter devices (BDs)
We consider equipping a UAV with a directional movable antenna (MA) with high directivity and flexibility.
We develop a deep reinforcement learning (DRL)-based strategy using the azimuth angle and distance between the UAV and each BD to simplify the agent's observation space.
arXiv Detail & Related papers (2024-11-21T09:34:48Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - UAV Swarm-enabled Collaborative Secure Relay Communications with
Time-domain Colluding Eavesdropper [115.56455278813756]
Unmanned aerial vehicles (UAV) as aerial relays are practically appealing for assisting Internet Things (IoT) network.
In this work, we aim to utilize the UAV to assist secure communication between the UAV base station and terminal terminal devices.
arXiv Detail & Related papers (2023-10-03T11:47:01Z) - Energy-Efficient Cellular-Connected UAV Swarm Control Optimization [25.299881367750487]
We propose a two-phase command and control (C&C) transmission scheme in a cellular-connected UAV swarm network.
We formulate the problem as a Constrained Markov Decision Process to find the optimal policy.
Our algorithm could maximize the number of UAVs that successfully receive the common C&C under energy constraints.
arXiv Detail & Related papers (2023-03-18T11:42:04Z) - Joint Optimization of Deployment and Trajectory in UAV and IRS-Assisted
IoT Data Collection System [25.32139119893323]
Unmanned aerial vehicles (UAVs) can be applied in many Internet of Things (IoT) systems.
The UAV-IoT wireless channels may be occasionally blocked by trees or high-rise buildings.
This article aims to minimize the energy consumption of the system by jointly optimizing the deployment and trajectory of the UAV.
arXiv Detail & Related papers (2022-10-27T06:27:40Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
This paper investigates a master unmanned aerial vehicle (MUAV)-powered Internet of Things (IoT) network.
We propose using a rechargeable auxiliary UAV (AUAV) equipped with an intelligent reflecting surface (IRS) to enhance the communication signals from the MUAV.
Under the proposed model, we investigate the optimal collaboration strategy of these energy-limited UAVs to maximize the accumulated throughput of the IoT network.
arXiv Detail & Related papers (2021-12-20T15:45:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.