Multimodal Feature Fusion and Knowledge-Driven Learning via Experts
Consult for Thyroid Nodule Classification
- URL: http://arxiv.org/abs/2005.14117v2
- Date: Mon, 25 Oct 2021 08:01:46 GMT
- Title: Multimodal Feature Fusion and Knowledge-Driven Learning via Experts
Consult for Thyroid Nodule Classification
- Authors: Danilo Avola, Luigi Cinque, Alessio Fagioli, Sebastiano Filetti,
Giorgio Grani, Emanuele Rodol\`a
- Abstract summary: Computer-aided diagnosis (CAD) is becoming a prominent approach to assist clinicians spanning multiple fields.
In this study, a novel end-to-end knowledge-driven classification framework is presented.
The proposed system leverages cues provided by an ensemble of experts to guide the learning phase of a densely connected convolutional network (DenseNet)
- Score: 11.160089265436689
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computer-aided diagnosis (CAD) is becoming a prominent approach to assist
clinicians spanning across multiple fields. These automated systems take
advantage of various computer vision (CV) procedures, as well as artificial
intelligence (AI) techniques, to formulate a diagnosis of a given image, e.g.,
computed tomography and ultrasound. Advances in both areas (CV and AI) are
enabling ever increasing performances of CAD systems, which can ultimately
avoid performing invasive procedures such as fine-needle aspiration. In this
study, a novel end-to-end knowledge-driven classification framework is
presented. The system focuses on multimodal data generated by thyroid
ultrasonography, and acts as a CAD system by providing a thyroid nodule
classification into the benign and malignant categories. Specifically, the
proposed system leverages cues provided by an ensemble of experts to guide the
learning phase of a densely connected convolutional network (DenseNet). The
ensemble is composed by various networks pretrained on ImageNet, including
AlexNet, ResNet, VGG, and others. The previously computed multimodal feature
parameters are used to create ultrasonography domain experts via transfer
learning, decreasing, moreover, the number of samples required for training. To
validate the proposed method, extensive experiments were performed, providing
detailed performances for both the experts ensemble and the knowledge-driven
DenseNet. As demonstrated by the results, the proposed system achieves relevant
performances in terms of qualitative metrics for the thyroid nodule
classification task, thus resulting in a great asset when formulating a
diagnosis.
Related papers
- Applying Conditional Generative Adversarial Networks for Imaging Diagnosis [3.881664394416534]
This study introduces an innovative application of Conditional Generative Adversarial Networks (C-GAN) integrated with Stacked Hourglass Networks (SHGN)
We address the problem of overfitting, common in deep learning models applied to complex imaging datasets, by augmenting data through rotation and scaling.
A hybrid loss function combining L1 and L2 reconstruction losses, enriched with adversarial training, is introduced to refine segmentation processes in intravascular ultrasound (IVUS) imaging.
arXiv Detail & Related papers (2024-07-17T23:23:09Z) - Detection and Classification of Diabetic Retinopathy using Deep Learning
Algorithms for Segmentation to Facilitate Referral Recommendation for Test
and Treatment Prediction [0.0]
This research paper addresses the critical challenge of diabetic retinopathy (DR), a severe complication of diabetes leading to potential blindness.
The proposed methodology leverages transfer learning with convolutional neural networks (CNNs) for automatic DR detection using a single fundus photograph.
High evaluation scores in Jaccard, F1, recall, precision, and accuracy underscore the model's potential for enhancing diagnostic capabilities in retinal pathology assessment.
arXiv Detail & Related papers (2024-01-05T11:19:24Z) - LOTUS: Learning to Optimize Task-based US representations [39.81131738128329]
Anatomical segmentation of organs in ultrasound images is essential to many clinical applications.
Existing deep neural networks require a large amount of labeled data for training in order to achieve clinically acceptable performance.
In this paper, we propose a novel approach for learning to optimize task-based ultra-sound image representations.
arXiv Detail & Related papers (2023-07-29T16:29:39Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Voice-assisted Image Labelling for Endoscopic Ultrasound Classification
using Neural Networks [48.732863591145964]
We propose a multi-modal convolutional neural network architecture that labels endoscopic ultrasound (EUS) images from raw verbal comments provided by a clinician during the procedure.
Our results show a prediction accuracy of 76% at image level on a dataset with 5 different labels.
arXiv Detail & Related papers (2021-10-12T21:22:24Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Studying Robustness of Semantic Segmentation under Domain Shift in
cardiac MRI [0.8858288982748155]
We study challenges and opportunities of domain transfer across images from multiple clinical centres and scanner vendors.
In this work, we build upon a fixed U-Net architecture configured by the nnU-net framework to investigate various data augmentation techniques and batch normalization layers.
arXiv Detail & Related papers (2020-11-15T17:50:23Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
We propose a novel method for Learning Binary Semantic Embedding (LBSE)
Based on the efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images.
Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:36:44Z) - Automatic Breast Lesion Classification by Joint Neural Analysis of
Mammography and Ultrasound [1.9814912982226993]
We propose a deep-learning based method for classifying breast cancer lesions from their respective mammography and ultrasound images.
The proposed approach is based on a GoogleNet architecture, fine-tuned for our data in two training steps.
It achieves an AUC of 0.94, outperforming state-of-the-art models trained over a single modality.
arXiv Detail & Related papers (2020-09-23T09:08:24Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.