Joint enhancement of automatic chest X-ray diagnosis and radiological gaze prediction with multi-stage cooperative learning
- URL: http://arxiv.org/abs/2403.16970v5
- Date: Sat, 15 Feb 2025 12:06:09 GMT
- Title: Joint enhancement of automatic chest X-ray diagnosis and radiological gaze prediction with multi-stage cooperative learning
- Authors: Zirui Qiu, Hassan Rivaz, Yiming Xiao,
- Abstract summary: We propose a novel deep learning framework for joint disease diagnosis and prediction of corresponding clinical visual attention maps for chest X-ray scans.
Specifically, we introduce a new dual-encoder multi-task UNet, which leverages both a DenseNet201 backbone and a Residual and Squeeze-and-Excitation block-based encoder.
Our proposed method is shown to significantly outperform existing techniques for chest X-ray diagnosis and the quality of visual attention map prediction.
- Score: 2.64700310378485
- License:
- Abstract: Purpose: As visual inspection is an inherent process during radiological screening, the associated eye gaze data can provide valuable insights into relevant clinical decisions. As deep learning has become the state-of-the-art for computer-assisted diagnosis, integrating human behavior, such as eye gaze data, into these systems is instrumental to help align machine predictions with clinical diagnostic criteria, thus enhancing the quality of automatic radiological diagnosis. Methods: We propose a novel deep learning framework for joint disease diagnosis and prediction of corresponding clinical visual attention maps for chest X-ray scans. Specifically, we introduce a new dual-encoder multi-task UNet, which leverages both a DenseNet201 backbone and a Residual and Squeeze-and-Excitation block-based encoder to extract diverse features for visual attention map prediction, and a multi-scale feature-fusion classifier to perform disease classification. To tackle the issue of asynchronous training schedules of individual tasks in multi-task learning, we proposed a multi-stage cooperative learning strategy, with contrastive learning for feature encoder pretraining to boost performance. Results: Our proposed method is shown to significantly outperform existing techniques for chest X-ray diagnosis (AUC=0.93) and the quality of visual attention map prediction (Correlation coefficient=0.58). Conclusion: Benefiting from the proposed multi-task multi-stage cooperative learning, our technique demonstrates the benefit of integrating clinicians' eye gaze into clinical AI systems to boost performance and potentially explainability.
Related papers
- MLVICX: Multi-Level Variance-Covariance Exploration for Chest X-ray Self-Supervised Representation Learning [6.4136876268620115]
MLVICX is an approach to capture rich representations in the form of embeddings from chest X-ray images.
We demonstrate the performance of MLVICX in advancing self-supervised chest X-ray representation learning.
arXiv Detail & Related papers (2024-03-18T06:19:37Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - MVC: A Multi-Task Vision Transformer Network for COVID-19 Diagnosis from
Chest X-ray Images [10.616065108433798]
We propose a new method, namely Multi-task Vision Transformer (MVC) for simultaneously classifying chest X-ray images and identifying affected regions from the input data.
Our method is built upon the Vision Transformer but extends its learning capability in a multi-task setting.
arXiv Detail & Related papers (2023-09-30T15:52:18Z) - Discrimination of Radiologists Utilizing Eye-Tracking Technology and
Machine Learning: A Case Study [0.9142067094647588]
This study presents a novel discretized feature encoding based on binning fixation data for efficient geometric alignment.
The encoded features of the eye-fixation data are employed by machine learning classifiers to discriminate between faculty and trainee radiologists.
arXiv Detail & Related papers (2023-08-04T23:51:47Z) - Diagnose Like a Radiologist: Hybrid Neuro-Probabilistic Reasoning for
Attribute-Based Medical Image Diagnosis [42.624671531003166]
We introduce a hybrid neuro-probabilistic reasoning algorithm for verifiable attribute-based medical image diagnosis.
We have successfully applied our hybrid reasoning algorithm to two challenging medical image diagnosis tasks.
arXiv Detail & Related papers (2022-08-19T12:06:46Z) - Multi-Modal Learning Using Physicians Diagnostics for Optical Coherence
Tomography Classification [0.0]
We propose a framework that incorporates experts diagnostics and insights into the analysis of Optical Coherence Tomography.
We create a medical diagnostic attribute dataset to improve disease classification using OCT.
arXiv Detail & Related papers (2022-03-20T18:37:20Z) - Leveraging Human Selective Attention for Medical Image Analysis with
Limited Training Data [72.1187887376849]
The selective attention mechanism helps the cognition system focus on task-relevant visual clues by ignoring the presence of distractors.
We propose a framework to leverage gaze for medical image analysis tasks with small training data.
Our method is demonstrated to achieve superior performance on both 3D tumor segmentation and 2D chest X-ray classification tasks.
arXiv Detail & Related papers (2021-12-02T07:55:25Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - Act Like a Radiologist: Towards Reliable Multi-view Correspondence
Reasoning for Mammogram Mass Detection [49.14070210387509]
We propose an Anatomy-aware Graph convolutional Network (AGN) for mammogram mass detection.
AGN is tailored for mammogram mass detection and endows existing detection methods with multi-view reasoning ability.
Experiments on two standard benchmarks reveal that AGN significantly exceeds the state-of-the-art performance.
arXiv Detail & Related papers (2021-05-21T06:48:34Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.