論文の概要: LR-CNN: Local-aware Region CNN for Vehicle Detection in Aerial Imagery
- arxiv url: http://arxiv.org/abs/2005.14264v1
- Date: Thu, 28 May 2020 19:57:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-27 05:29:18.311294
- Title: LR-CNN: Local-aware Region CNN for Vehicle Detection in Aerial Imagery
- Title(参考訳): LR-CNN:航空画像における車両検出のための地域認識領域CNN
- Authors: Wentong Liao, Xiang Chen, Jingfeng Yang, Stefan Roth, Michael Goesele,
Michael Ying Yang, Bodo Rosenhahn
- Abstract要約: 最先端の物体検出手法は、大規模な空中画像において、任意の向きの密集した小さなターゲットを検出するのに困難である。
本稿では,航空画像における車両検出のための新しい2段階アプローチとして,地域認識型地域畳み込みニューラルネットワーク(LR-CNN)を提案する。
- 参考スコア(独自算出の注目度): 43.91170581467171
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State-of-the-art object detection approaches such as Fast/Faster R-CNN, SSD,
or YOLO have difficulties detecting dense, small targets with arbitrary
orientation in large aerial images. The main reason is that using interpolation
to align RoI features can result in a lack of accuracy or even loss of location
information. We present the Local-aware Region Convolutional Neural Network
(LR-CNN), a novel two-stage approach for vehicle detection in aerial imagery.
We enhance translation invariance to detect dense vehicles and address the
boundary quantization issue amongst dense vehicles by aggregating the
high-precision RoIs' features. Moreover, we resample high-level semantic pooled
features, making them regain location information from the features of a
shallower convolutional block. This strengthens the local feature invariance
for the resampled features and enables detecting vehicles in an arbitrary
orientation. The local feature invariance enhances the learning ability of the
focal loss function, and the focal loss further helps to focus on the hard
examples. Taken together, our method better addresses the challenges of aerial
imagery. We evaluate our approach on several challenging datasets (VEDAI,
DOTA), demonstrating a significant improvement over state-of-the-art methods.
We demonstrate the good generalization ability of our approach on the DLR 3K
dataset.
- Abstract(参考訳): Fast/Faster R-CNN, SSD, YOLOといった最先端のオブジェクト検出手法では, 大規模な空中画像において, 任意の向きの高密度で小さなターゲットを検出するのが困難である。
主な理由は、補間を使ってRoI機能を整列させると、精度の欠如や位置情報の喪失につながるためである。
本稿では,航空画像における車両検出のための新しい2段階アプローチである,ローカルアウェア領域畳み込みニューラルネットワーク(lr-cnn)を提案する。
我々は,高精度RoIsの特徴を集約することにより,高密度車両の翻訳不変性を高め,高密度車両の境界量子化問題に対処する。
さらに,より浅い畳み込みブロックの特徴から,高レベルのセマンティックプール機能を再サンプリングし,位置情報を復元する。
これにより、再サンプリングされた特徴に対する局所的特徴不変性を強化し、任意の向きで車両を検出することができる。
局所的特徴不変性は、焦点損失関数の学習能力を高め、焦点損失はさらに、難しい例に焦点を合わせるのに役立つ。
本手法は,航空画像の課題に対処する。
我々は,いくつかの挑戦的データセット(VEDAI,DOTA)に対するアプローチを評価し,最先端手法よりも大幅に改善したことを示す。
DLR 3Kデータセットに対するアプローチの優れた一般化能力を示す。
関連論文リスト
- YOLC: You Only Look Clusters for Tiny Object Detection in Aerial Images [33.80392696735718]
YOLC(You Only Look Clusters)は、アンカーフリーなオブジェクト検出器であるCenterNet上に構築された、効率的で効果的なフレームワークである。
大規模画像や非一様オブジェクトの分布がもたらす課題を克服するため,正確な検出のためにクラスタ領域のズームインを適応的に検索するローカルスケールモジュール(LSM)を導入する。
Visdrone 2019 と UAVDT を含む2つの航空画像データセットに対する広範な実験を行い、提案手法の有効性と優位性を実証した。
論文 参考訳(メタデータ) (2024-04-09T10:03:44Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Unleash the Potential of Image Branch for Cross-modal 3D Object
Detection [67.94357336206136]
画像分岐のポテンシャルを2つの側面から解き放つことを目的として,新しい3Dオブジェクト検出器UPIDetを提案する。
まず、UPIDetは正規化された局所座標写像推定と呼ばれる新しい2次元補助タスクを導入する。
第2に,イメージブランチのトレーニング目標から逆転する勾配によって,ポイントクラウドバックボーンの表現能力を向上できることを見出した。
論文 参考訳(メタデータ) (2023-01-22T08:26:58Z) - Progressive Domain Adaptation with Contrastive Learning for Object
Detection in the Satellite Imagery [0.0]
最先端のオブジェクト検出手法は、小さくて密度の高いオブジェクトを特定するのにほとんど失敗している。
本稿では,特徴抽出プロセスを改善する小型物体検出パイプラインを提案する。
未確認データセットにおけるオブジェクト識別の劣化を緩和できることを示す。
論文 参考訳(メタデータ) (2022-09-06T15:16:35Z) - DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images [11.45718985586972]
空中画像における回転物体検出のための高密度アンカーフリー回転物体検出器(DARDet)を提案する。
我々のDARDetは、特徴マップの各前景ピクセルで回転したボックスの5つのパラメータを直接予測する。
提案手法は, 一般的に使用されている3つの空中オブジェクトデータセットに対して, 最先端の性能を実現する。
論文 参考訳(メタデータ) (2021-10-03T15:28:14Z) - Progressive Coordinate Transforms for Monocular 3D Object Detection [52.00071336733109]
本稿では,学習座標表現を容易にするために,PCT(Em Progressive Coordinate Transforms)と呼ばれる,新しい軽量なアプローチを提案する。
本稿では,学習座標表現を容易にするために,PCT(Em Progressive Coordinate Transforms)と呼ばれる,新しい軽量なアプローチを提案する。
論文 参考訳(メタデータ) (2021-08-12T15:22:33Z) - CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented
Object Detection in Remote Sensing Images [0.9462808515258465]
本稿では,物体検出における識別的特徴の役割について論じる。
次に,検出精度を向上させるために,cfc-net (critical feature capture network) を提案する。
本手法は多くの最先端手法と比較して優れた検出性能が得られることを示す。
論文 参考訳(メタデータ) (2021-01-18T02:31:09Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
本稿では,分類に基づく比較的研究の少ない方法論について検討する。
我々は2つの側面でフロンティアを推し進めるための新しい手法を提案する。
航空画像のための大規模公開データセットの実験と視覚解析は,我々のアプローチの有効性を示している。
論文 参考訳(メタデータ) (2020-11-19T05:42:02Z) - Locality-Aware Rotated Ship Detection in High-Resolution Remote Sensing
Imagery Based on Multi-Scale Convolutional Network [7.984128966509492]
マルチスケール畳み込みニューラルネットワーク(CNN)に基づく局所性認識型回転船検出(LARSD)フレームワークを提案する。
提案フレームワークはUNetのようなマルチスケールCNNを用いて高解像度の情報を持つマルチスケール特徴マップを生成する。
検出データセットを拡大するために、新しい高解像度船舶検出(HRSD)データセットを構築し、2499の画像と9269のインスタンスを異なる解像度でGoogle Earthから収集した。
論文 参考訳(メタデータ) (2020-07-24T03:01:42Z) - SCRDet++: Detecting Small, Cluttered and Rotated Objects via
Instance-Level Feature Denoising and Rotation Loss Smoothing [131.04304632759033]
小さくて散らばった物体は実世界では一般的であり、検出は困難である。
本稿では,まず,物体検出にデノナイズするアイデアを革新的に紹介する。
機能マップ上のインスタンスレベルの記述は、小さくて散らばったオブジェクトの検出を強化するために行われる。
論文 参考訳(メタデータ) (2020-04-28T06:03:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。