Deep graph learning for semi-supervised classification
- URL: http://arxiv.org/abs/2005.14403v1
- Date: Fri, 29 May 2020 05:59:45 GMT
- Title: Deep graph learning for semi-supervised classification
- Authors: Guangfeng Lin, Xiaobing Kang, Kaiyang Liao, Fan Zhao, Yajun Chen
- Abstract summary: Graph learning (GL) can dynamically capture the distribution structure (graph structure) of data based on graph convolutional networks (GCN)
Existing methods mostly combine the computational layer and the related losses into GCN for exploring the global graph or local graph.
Deep graph learning(DGL) is proposed to find the better graph representation for semi-supervised classification.
- Score: 11.260083018676548
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Graph learning (GL) can dynamically capture the distribution structure (graph
structure) of data based on graph convolutional networks (GCN), and the
learning quality of the graph structure directly influences GCN for
semi-supervised classification. Existing methods mostly combine the
computational layer and the related losses into GCN for exploring the global
graph(measuring graph structure from all data samples) or local graph
(measuring graph structure from local data samples). Global graph emphasises on
the whole structure description of the inter-class data, while local graph
trend to the neighborhood structure representation of intra-class data.
However, it is difficult to simultaneously balance these graphs of the learning
process for semi-supervised classification because of the interdependence of
these graphs. To simulate the interdependence, deep graph learning(DGL) is
proposed to find the better graph representation for semi-supervised
classification. DGL can not only learn the global structure by the previous
layer metric computation updating, but also mine the local structure by next
layer local weight reassignment. Furthermore, DGL can fuse the different
structures by dynamically encoding the interdependence of these structures, and
deeply mine the relationship of the different structures by the hierarchical
progressive learning for improving the performance of semi-supervised
classification. Experiments demonstrate the DGL outperforms state-of-the-art
methods on three benchmark datasets (Citeseer,Cora, and Pubmed) for citation
networks and two benchmark datasets (MNIST and Cifar10) for images.
Related papers
- GaGSL: Global-augmented Graph Structure Learning via Graph Information Bottleneck [5.943641527857957]
We propose a novel method named textitGlobal-augmented Graph Structure Learning (GaGSL)
The key idea behind GaGSL is to learn a compact and informative graph structure for node classification tasks.
Comprehensive evaluations across a range of datasets reveal the outstanding performance and robustness of GaGSL compared with the state-of-the-art methods.
arXiv Detail & Related papers (2024-11-07T01:23:48Z) - Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
We propose a Graph Structure Self-Contrasting (GSSC) framework that learns graph structural information without message passing.
The proposed framework is based purely on Multi-Layer Perceptrons (MLPs), where the structural information is only implicitly incorporated as prior knowledge.
It first applies structural sparsification to remove potentially uninformative or noisy edges in the neighborhood, and then performs structural self-contrasting in the sparsified neighborhood to learn robust node representations.
arXiv Detail & Related papers (2024-09-09T12:56:02Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Homophily-enhanced Structure Learning for Graph Clustering [19.586401211161846]
Graph structure learning allows refining the input graph by adding missing links and removing spurious connections.
Previous endeavors in graph structure learning have predominantly centered around supervised settings.
We propose a novel method called textbfhomophily-enhanced structure textbflearning for graph clustering (HoLe)
arXiv Detail & Related papers (2023-08-10T02:53:30Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - Semantic Graph Neural Network with Multi-measure Learning for
Semi-supervised Classification [5.000404730573809]
Graph Neural Networks (GNNs) have attracted increasing attention in recent years.
Recent studies have shown that GNNs are vulnerable to the complex underlying structure of the graph.
We propose a novel framework for semi-supervised classification.
arXiv Detail & Related papers (2022-12-04T06:17:11Z) - Structure-Preserving Graph Representation Learning [43.43429108503634]
We propose a novel Structure-Preserving Graph Representation Learning (SPGRL) method to fully capture the structure information of graphs.
Specifically, to reduce the uncertainty and misinformation of the original graph, we construct a feature graph as a complementary view via k-Nearest Neighbor method.
Our method has quite superior performance on semi-supervised node classification task and excellent robustness under noise perturbation on graph structure or node features.
arXiv Detail & Related papers (2022-09-02T02:49:19Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Self-supervised Graph-level Representation Learning with Local and
Global Structure [71.45196938842608]
We propose a unified framework called Local-instance and Global-semantic Learning (GraphLoG) for self-supervised whole-graph representation learning.
Besides preserving the local similarities, GraphLoG introduces the hierarchical prototypes to capture the global semantic clusters.
An efficient online expectation-maximization (EM) algorithm is further developed for learning the model.
arXiv Detail & Related papers (2021-06-08T05:25:38Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.