Self-supervised Graph-level Representation Learning with Local and
Global Structure
- URL: http://arxiv.org/abs/2106.04113v1
- Date: Tue, 8 Jun 2021 05:25:38 GMT
- Title: Self-supervised Graph-level Representation Learning with Local and
Global Structure
- Authors: Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, Jian Tang
- Abstract summary: We propose a unified framework called Local-instance and Global-semantic Learning (GraphLoG) for self-supervised whole-graph representation learning.
Besides preserving the local similarities, GraphLoG introduces the hierarchical prototypes to capture the global semantic clusters.
An efficient online expectation-maximization (EM) algorithm is further developed for learning the model.
- Score: 71.45196938842608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies unsupervised/self-supervised whole-graph representation
learning, which is critical in many tasks such as molecule properties
prediction in drug and material discovery. Existing methods mainly focus on
preserving the local similarity structure between different graph instances but
fail to discover the global semantic structure of the entire data set. In this
paper, we propose a unified framework called Local-instance and Global-semantic
Learning (GraphLoG) for self-supervised whole-graph representation learning.
Specifically, besides preserving the local similarities, GraphLoG introduces
the hierarchical prototypes to capture the global semantic clusters. An
efficient online expectation-maximization (EM) algorithm is further developed
for learning the model. We evaluate GraphLoG by pre-training it on massive
unlabeled graphs followed by fine-tuning on downstream tasks. Extensive
experiments on both chemical and biological benchmark data sets demonstrate the
effectiveness of the proposed approach.
Related papers
- RAGraph: A General Retrieval-Augmented Graph Learning Framework [35.25522856244149]
We introduce a novel framework called General Retrieval-Augmented Graph Learning (RAGraph)
RAGraph brings external graph data into the general graph foundation model to improve model generalization on unseen scenarios.
During inference, the RAGraph adeptly retrieves similar toy graphs based on key similarities in downstream tasks.
arXiv Detail & Related papers (2024-10-31T12:05:21Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
We propose a novel framework for defining a graph mean via embeddings in the space of smooth graph signal distributions.
By finding a mean in this embedding space, we can recover a mean graph that preserves structural information.
We establish the existence and uniqueness of the novel graph mean, and provide an iterative algorithm for computing it.
arXiv Detail & Related papers (2023-05-31T11:04:53Z) - Structure-Preserving Graph Representation Learning [43.43429108503634]
We propose a novel Structure-Preserving Graph Representation Learning (SPGRL) method to fully capture the structure information of graphs.
Specifically, to reduce the uncertainty and misinformation of the original graph, we construct a feature graph as a complementary view via k-Nearest Neighbor method.
Our method has quite superior performance on semi-supervised node classification task and excellent robustness under noise perturbation on graph structure or node features.
arXiv Detail & Related papers (2022-09-02T02:49:19Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z) - Structure-Enhanced Meta-Learning For Few-Shot Graph Classification [53.54066611743269]
This work explores the potential of metric-based meta-learning for solving few-shot graph classification.
An implementation upon GIN, named SMFGIN, is tested on two datasets, Chembl and TRIANGLES.
arXiv Detail & Related papers (2021-03-05T09:03:03Z) - Sub-graph Contrast for Scalable Self-Supervised Graph Representation
Learning [21.0019144298605]
Existing graph neural networks fed with the complete graph data are not scalable due to limited computation and memory costs.
textscSubg-Con is proposed by utilizing the strong correlation between central nodes and their sampled subgraphs to capture regional structure information.
Compared with existing graph representation learning approaches, textscSubg-Con has prominent performance advantages in weaker supervision requirements, model learning scalability, and parallelization.
arXiv Detail & Related papers (2020-09-22T01:58:19Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z) - Deep graph learning for semi-supervised classification [11.260083018676548]
Graph learning (GL) can dynamically capture the distribution structure (graph structure) of data based on graph convolutional networks (GCN)
Existing methods mostly combine the computational layer and the related losses into GCN for exploring the global graph or local graph.
Deep graph learning(DGL) is proposed to find the better graph representation for semi-supervised classification.
arXiv Detail & Related papers (2020-05-29T05:59:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.