Non-Local Graph Neural Networks
- URL: http://arxiv.org/abs/2005.14612v2
- Date: Sat, 11 Dec 2021 01:17:40 GMT
- Title: Non-Local Graph Neural Networks
- Authors: Meng Liu, Zhengyang Wang, Shuiwang Ji
- Abstract summary: We propose a simple yet effective non-local aggregation framework with an efficient attention-guided sorting for GNNs.
We perform thorough experiments to analyze disassortative graph datasets and evaluate our non-local GNNs.
- Score: 60.28057802327858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern graph neural networks (GNNs) learn node embeddings through multilayer
local aggregation and achieve great success in applications on assortative
graphs. However, tasks on disassortative graphs usually require non-local
aggregation. In addition, we find that local aggregation is even harmful for
some disassortative graphs. In this work, we propose a simple yet effective
non-local aggregation framework with an efficient attention-guided sorting for
GNNs. Based on it, we develop various non-local GNNs. We perform thorough
experiments to analyze disassortative graph datasets and evaluate our non-local
GNNs. Experimental results demonstrate that our non-local GNNs significantly
outperform previous state-of-the-art methods on seven benchmark datasets of
disassortative graphs, in terms of both model performance and efficiency.
Related papers
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
We study a new problem, GNN model evaluation, that aims to assess the performance of a specific GNN model trained on labeled and observed graphs.
We propose a two-stage GNN model evaluation framework, including (1) DiscGraph set construction and (2) GNNEvaluator training and inference.
Under the effective training supervision from the DiscGraph set, GNNEvaluator learns to precisely estimate node classification accuracy of the to-be-evaluated GNN model.
arXiv Detail & Related papers (2023-10-23T05:51:59Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - LSGNN: Towards General Graph Neural Network in Node Classification by
Local Similarity [59.41119013018377]
We propose to use the local similarity (LocalSim) to learn node-level weighted fusion, which can also serve as a plug-and-play module.
For better fusion, we propose a novel and efficient Initial Residual Difference Connection (IRDC) to extract more informative multi-hop information.
Our proposed method, namely Local Similarity Graph Neural Network (LSGNN), can offer comparable or superior state-of-the-art performance on both homophilic and heterophilic graphs.
arXiv Detail & Related papers (2023-05-07T09:06:11Z) - Revisiting Heterophily For Graph Neural Networks [42.41238892727136]
Graph Neural Networks (GNNs) extend basic Neural Networks (NNs) by using graph structures based on the relational inductive bias (homophily assumption)
Recent work has identified a non-trivial set of datasets where their performance compared to NNs is not satisfactory.
arXiv Detail & Related papers (2022-10-14T08:00:26Z) - Geodesic Graph Neural Network for Efficient Graph Representation
Learning [34.047527874184134]
We propose an efficient GNN framework called Geodesic GNN (GDGNN)
It injects conditional relationships between nodes into the model without labeling.
Conditioned on the geodesic representations, GDGNN is able to generate node, link, and graph representations that carry much richer structural information than plain GNNs.
arXiv Detail & Related papers (2022-10-06T02:02:35Z) - On Local Aggregation in Heterophilic Graphs [11.100606980915144]
We show that properly tuned classical GNNs and multi-layer perceptrons match or exceed the accuracy of recent long-range aggregation methods on heterophilic graphs.
We propose the Neighborhood Information Content(NIC) metric, which is a novel information-theoretic graph metric.
arXiv Detail & Related papers (2021-06-06T19:12:31Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.