FIT-GNN: Faster Inference Time for GNNs Using Coarsening
- URL: http://arxiv.org/abs/2410.15001v2
- Date: Fri, 24 Jan 2025 20:45:33 GMT
- Title: FIT-GNN: Faster Inference Time for GNNs Using Coarsening
- Authors: Shubhajit Roy, Hrriday Ruparel, Kishan Ved, Anirban Dasgupta,
- Abstract summary: coarsening-based methods are used to reduce the graph into a smaller graph, resulting in faster computation.
Prior research has not adequately addressed the computational costs during the inference phase.
This paper presents a novel approach to improve the scalability of GNNs by reducing computational burden during both training and inference phases.
- Score: 1.323700980948722
- License:
- Abstract: Scalability of Graph Neural Networks (GNNs) remains a significant challenge, particularly when dealing with large-scale graphs. To tackle this, coarsening-based methods are used to reduce the graph into a smaller graph, resulting in faster computation. Nonetheless, prior research has not adequately addressed the computational costs during the inference phase. This paper presents a novel approach to improve the scalability of GNNs by reducing computational burden during both training and inference phases. We demonstrate two different methods (Extra-Nodes and Cluster-Nodes). Our study also proposes a unique application of the coarsening algorithm for graph-level tasks, including graph classification and graph regression, which have not yet been explored. We conduct extensive experiments on multiple benchmark datasets in the order of $100K$ nodes to evaluate the performance of our approach. The results demonstrate that our method achieves competitive performance in tasks involving classification and regression on nodes and graphs, compared to traditional GNNs, while having single-node inference times that are orders of magnitude faster. Furthermore, our approach significantly reduces memory consumption, allowing training and inference on low-resource devices where traditional methods struggle.
Related papers
- Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) is a non-neural model designed for node classification tasks.
Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities.
arXiv Detail & Related papers (2024-11-19T08:32:14Z) - Haste Makes Waste: A Simple Approach for Scaling Graph Neural Networks [37.41604955004456]
Graph neural networks (GNNs) have demonstrated remarkable success in graph representation learning.
Various sampling approaches have been proposed to scale GNNs to applications with large-scale graphs.
arXiv Detail & Related papers (2024-10-07T18:29:02Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
Graph Neural Networks (GNNs) show promising results for graph tasks.
Existing GNNs' generalization ability will degrade when there exist distribution shifts between testing and training graph data.
We propose a novel nonlinear graph decorrelation method, which can substantially improve the out-of-distribution generalization ability.
arXiv Detail & Related papers (2023-12-19T12:25:10Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
Large-scale graph training is a notoriously challenging problem for graph neural networks (GNNs)
We present a new ensembling training manner, named EnGCN, to address the existing issues.
Our proposed method has achieved new state-of-the-art (SOTA) performance on large-scale datasets.
arXiv Detail & Related papers (2022-10-14T03:43:05Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Scaling Up Graph Neural Networks Via Graph Coarsening [18.176326897605225]
Scalability of graph neural networks (GNNs) is one of the major challenges in machine learning.
In this paper, we propose to use graph coarsening for scalable training of GNNs.
We show that, simply applying off-the-shelf coarsening methods, we can reduce the number of nodes by up to a factor of ten without causing a noticeable downgrade in classification accuracy.
arXiv Detail & Related papers (2021-06-09T15:46:17Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
We consider the problem of learning a graphon neural network (WNN) by training GNNs on graphs sampled Bernoulli from the graphon.
Inspired by these results, we propose an algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training.
arXiv Detail & Related papers (2021-06-07T15:05:59Z) - Fast Graph Attention Networks Using Effective Resistance Based Graph
Sparsification [70.50751397870972]
FastGAT is a method to make attention based GNNs lightweight by using spectral sparsification to generate an optimal pruning of the input graph.
We experimentally evaluate FastGAT on several large real world graph datasets for node classification tasks.
arXiv Detail & Related papers (2020-06-15T22:07:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.