論文の概要: Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms
- arxiv url: http://arxiv.org/abs/2006.00086v1
- Date: Fri, 29 May 2020 21:23:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 23:58:44.333107
- Title: Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms
- Title(参考訳): 文脈的GANを用いた合成病変の乳がん分類の改善
- Authors: Eric Wu, Kevin Wu, William Lotter
- Abstract要約: 本稿では, マンモグラムの病変を現実的に合成し, 除去するデータ拡張のための, GANモデルを提案する。
自己注意と半教師付き学習コンポーネントにより、U-netベースのアーキテクチャは高解像度(256x256px)の出力を生成することができる。
- 参考スコア(独自算出の注目度): 0.4297070083645048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data scarcity and class imbalance are two fundamental challenges in many
machine learning applications to healthcare. Breast cancer classification in
mammography exemplifies these challenges, with a malignancy rate of around 0.5%
in a screening population, which is compounded by the relatively small size of
lesions (~1% of the image) in malignant cases. Simultaneously, the prevalence
of screening mammography creates a potential abundance of non-cancer exams to
use for training. Altogether, these characteristics lead to overfitting on
cancer cases, while under-utilizing non-cancer data. Here, we present a novel
generative adversarial network (GAN) model for data augmentation that can
realistically synthesize and remove lesions on mammograms. With self-attention
and semi-supervised learning components, the U-net-based architecture can
generate high resolution (256x256px) outputs, as necessary for mammography.
When augmenting the original training set with the GAN-generated samples, we
find a significant improvement in malignancy classification performance on a
test set of real mammogram patches. Overall, the empirical results of our
algorithm and the relevance to other medical imaging paradigms point to
potentially fruitful further applications.
- Abstract(参考訳): データ不足とクラス不均衡は、多くの機械学習アプリケーションから医療への根本的な課題である。
マンモグラフィーにおける乳癌の分類はこれらの課題を例示しており、検診では腫瘍率は約0.5%であり、悪性症例では比較的小さな病変(画像の約1%)が混在している。
同時に、検診マンモグラフィの普及は、訓練に使用する非がん検査を潜在的に豊富に生み出す。
これらの特徴は、がん患者に過度に当てはまる一方、非がんデータに過小評価される。
本稿では, マンモグラムの病変を現実的に合成, 除去できるデータ拡張のための, GAN(generative adversarial network)モデルを提案する。
セルフアテンションとセミ教師付き学習コンポーネントにより、u-netベースのアーキテクチャはマンモグラフィに必要な高分解能(256x256px)出力を生成することができる。
実際のマンモグラムパッチを用いて, GAN 生成サンプルを用いてトレーニングセットを増強すると, 悪性度分類性能が有意に向上することがわかった。
全体として、我々のアルゴリズムの実証結果と他の医療画像パラダイムとの関連性は、さらなる実りある応用の可能性を示している。
関連論文リスト
- Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Improved Breast Cancer Diagnosis through Transfer Learning on
Hematoxylin and Eosin Stained Histology Images [3.7498611358320733]
本研究では,最新のBRACS染色画像を用いて乳癌腫瘍の分類を行った。
我々は、Xception、EfficientNet、ResNet50、InceptionResNetといった、ImageNet重みに基づいて事前訓練された様々なディープラーニングモデルを用いて実験を行った。
論文 参考訳(メタデータ) (2023-09-15T20:16:17Z) - High-resolution synthesis of high-density breast mammograms: Application
to improved fairness in deep learning based mass detection [48.88813637974911]
深層学習に基づくコンピュータ支援検出システムは乳癌検出において優れた性能を示した。
高密度の乳房は、高密度の組織がマスを覆ったりシミュレートしたりできるため、検出性能が劣っている。
本研究は,高密度乳房における高密度フルフィールドデジタルマンモグラムを用いた質量検出性能の向上を目的とする。
論文 参考訳(メタデータ) (2022-09-20T15:57:12Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
超高分解能超音波局在顕微鏡は毛細血管レベルでの微小血管のイメージングを可能にする。
この作業では、これらの課題に対処するために、信号構造を効果的に活用するディープニューラルネットワークアーキテクチャを使用します。
トレーニングしたネットワークを利用することで,従来のPSF知識を必要とせず,UCAの分離性も必要とせず,短時間で微小血管構造を復元する。
論文 参考訳(メタデータ) (2021-07-12T09:04:20Z) - Predicting invasive ductal carcinoma using a Reinforcement Sample
Learning Strategy using Deep Learning [0.951828574518325]
浸潤性管癌の死因は女性で2番目に多い。
特定のマンモグラフィーの像の明瞭度や構造が変化しているため、がんの特徴を観察することは困難である。
本稿では乳房マンモグラフィー画像に畳み込みニューラルネットワークを新たに利用する腫瘍分類アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-26T14:14:45Z) - DenseNet for Breast Tumor Classification in Mammographic Images [0.0]
本研究の目的は,マンモグラフィ画像における乳腺病変の自動検出,分画,分類のための深層畳み込みニューラルネットワーク手法を構築することである。
ディープラーニングに基づいて,選択と抽出を特徴とするmask-cnn(roialign)法を開発し,drknet architectureを用いて分類を行った。
論文 参考訳(メタデータ) (2021-01-24T03:30:59Z) - MammoGANesis: Controlled Generation of High-Resolution Mammograms for
Radiology Education [0.0]
我々は,512×512高分解能マンモグラムを合成するために,GAN(Generative Adversarial Network)を訓練する。
結果として得られるモデルは、教師なしの高レベルの特徴の分離につながる。
両盲検で平均AUC0.54を達成し,医療関連マンモグラムの生成能力を示す。
論文 参考訳(メタデータ) (2020-10-11T06:47:56Z) - A Two-Stage Multiple Instance Learning Framework for the Detection of
Breast Cancer in Mammograms [13.842620686759616]
乳がんの大規模検診ではマンモグラムが一般的に用いられる。
画像レベルの悪性度検出のための2段階多段階学習フレームワークを提案する。
グローバルなイメージレベル機能は、CNNで学んだパッチレベル機能の重み付け平均として計算される。
画像レベルの分類では, 平均精度が0.76/0.80, 平均AUCが0.91であった。
論文 参考訳(メタデータ) (2020-04-24T13:06:47Z) - Understanding the robustness of deep neural network classifiers for
breast cancer screening [52.50078591615855]
ディープニューラルネットワーク(DNN)は乳がん検診において有望であるが、その入力摂動に対する堅牢性は臨床的に実装される前によりよく理解する必要がある。
放射線技師レベルのマンモグラム画像分類器の4種類の入力摂動に対する感度を測定した。
また,低域通過フィルタの効果について詳細な解析を行い,臨床的に有意な特徴の視認性を低下させることを示した。
論文 参考訳(メタデータ) (2020-03-23T01:26:36Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。