論文の概要: Explanations of Black-Box Model Predictions by Contextual Importance and
Utility
- arxiv url: http://arxiv.org/abs/2006.00199v1
- Date: Sat, 30 May 2020 06:49:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 17:32:37.442123
- Title: Explanations of Black-Box Model Predictions by Contextual Importance and
Utility
- Title(参考訳): 文脈的重要性と実用性によるブラックボックスモデル予測の解説
- Authors: Sule Anjomshoae, Kary Fr\"amling and Amro Najjar
- Abstract要約: 本稿では,初級者だけでなく専門家が容易に理解できる説明を抽出するために,文脈重要度(CI)と文脈実用性(CU)の概念を提案する。
本手法は,モデルを解釈可能なモデルに変換することなく予測結果を説明する。
カーセレクションの例とアイリスの花分類における説明の有用性を,完全な(つまり,個人の予測の原因)と対照的な説明を提示することによって示す。
- 参考スコア(独自算出の注目度): 1.7188280334580195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The significant advances in autonomous systems together with an immensely
wider application domain have increased the need for trustable intelligent
systems. Explainable artificial intelligence is gaining considerable attention
among researchers and developers to address this requirement. Although there is
an increasing number of works on interpretable and transparent machine learning
algorithms, they are mostly intended for the technical users. Explanations for
the end-user have been neglected in many usable and practical applications. In
this work, we present the Contextual Importance (CI) and Contextual Utility
(CU) concepts to extract explanations that are easily understandable by experts
as well as novice users. This method explains the prediction results without
transforming the model into an interpretable one. We present an example of
providing explanations for linear and non-linear models to demonstrate the
generalizability of the method. CI and CU are numerical values that can be
represented to the user in visuals and natural language form to justify actions
and explain reasoning for individual instances, situations, and contexts. We
show the utility of explanations in car selection example and Iris flower
classification by presenting complete (i.e. the causes of an individual
prediction) and contrastive explanation (i.e. contrasting instance against the
instance of interest). The experimental results show the feasibility and
validity of the provided explanation methods.
- Abstract(参考訳): 自律システムの大幅な進歩と、非常に広いアプリケーションドメインは、信頼できるインテリジェントシステムの必要性を高めた。
説明可能な人工知能はこの要件に対処するために研究者や開発者の間で注目を集めている。
解釈可能で透明な機械学習アルゴリズムに関する研究が増えているが、それらは主に技術ユーザを対象としている。
エンドユーザの説明は多くの実用的かつ実用的なアプリケーションでは無視されている。
本稿では,専門家や初心者が容易に理解できる説明文を抽出するために,文脈的重要性(ci)と文脈的有用性(cu)の概念を提案する。
本手法は,モデルを解釈可能なモデルに変換することなく予測結果を説明する。
本稿では,線形モデルと非線形モデルの一般化可能性を示す一例を示す。
CIとCUは、アクションを正当化し、個々のインスタンス、状況、コンテキストの推論を説明するために、視覚と自然言語形式でユーザに表現できる数値である。
カーセレクションの例とアイリスの花分類における説明の有用性を,完全(個人の予測の原因)と対照的な説明(興味のある事例と対照的な例)を提示することで示す。
実験の結果,提案手法の有効性と妥当性が示された。
関連論文リスト
- Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
機械学習モデル構築の実践シナリオにおいて、説明が人間の意思決定を改善するかどうかを評価する。
驚いたことに、サリエンシマップが提供されたとき、タスクが大幅に改善されたという証拠は見つからなかった。
以上の結果から,サリエンシに基づく説明における誤解の可能性と有用性について注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T23:13:23Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - Textual Explanations and Critiques in Recommendation Systems [8.406549970145846]
論文は、このニーズに対処する2つの根本的な課題に焦点を当てています。
1つ目は、スケーラブルでデータ駆動的な説明生成である。
第2の課題は、説明を実行可能なものにすることだ。
論文 参考訳(メタデータ) (2022-05-15T11:59:23Z) - Visual Abductive Reasoning [85.17040703205608]
帰納的推論は、部分的な観察の可能な限りの可能な説明を求める。
本稿では,日常的な視覚的状況下でのマシンインテリジェンスの帰納的推論能力を調べるために,新たなタスクとデータセットであるVisual Abductive Reasoning(VAR)を提案する。
論文 参考訳(メタデータ) (2022-03-26T10:17:03Z) - Contrastive Explanations for Model Interpretability [77.92370750072831]
分類モデルの対照的説明を生成する手法を提案する。
本手法は潜在空間へのモデル表現の投影に基づいている。
本研究は,モデル決定のより正確できめ細かな解釈性を提供するためのラベルコントラスト的説明の能力に光を当てた。
論文 参考訳(メタデータ) (2021-03-02T00:36:45Z) - This is not the Texture you are looking for! Introducing Novel
Counterfactual Explanations for Non-Experts using Generative Adversarial
Learning [59.17685450892182]
反実用説明システムは、入力画像を変更して反実用推論を可能にする。
本稿では, 対向画像から画像への変換技術に基づく, 対向画像の説明を新たに生成する手法を提案する。
その結果,我々のアプローチは,2つの最先端技術システムよりも,メンタルモデル,説明満足度,信頼度,感情,自己効力に関して有意に優れた結果をもたらすことがわかった。
論文 参考訳(メタデータ) (2020-12-22T10:08:05Z) - Efficient computation of contrastive explanations [8.132423340684568]
対照的な説明と反実的な説明の関係について検討する。
本稿では,多くの標準機械学習モデルの正値(有理)を効率的に計算する2相アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-06T11:50:28Z) - Interpretable Representations in Explainable AI: From Theory to Practice [7.031336702345381]
解釈可能な表現は、ブラックボックス予測システムをターゲットにした多くの説明器のバックボーンである。
人間の理解可能な概念の存在と欠如をエンコードする解釈可能な表現の特性について検討する。
論文 参考訳(メタデータ) (2020-08-16T21:44:03Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。