Dzyaloshinskii-Moriya and dipole-dipole interactions affect
coupling-based Landau-Majorana-St\"uckelberg-Zener transitions
- URL: http://arxiv.org/abs/2006.00229v1
- Date: Sat, 30 May 2020 09:42:55 GMT
- Title: Dzyaloshinskii-Moriya and dipole-dipole interactions affect
coupling-based Landau-Majorana-St\"uckelberg-Zener transitions
- Authors: Roberto Grimaudo, Hiromichi Nakazato, Antonino Messina, Nikolay V.
Vitanov
- Abstract summary: Two spins (qubits or qutrits) only undergo a coupling-based joint Landau-Majorana-St"uckelberg-Zener (LMSZ) transition when a linear ramp acts upon one of the two spins.
The effects on the quantum dynamics of the two qudits, stemming from the Dzyaloshinskii-Moriya (DM) and dipole-dipole (d-d) interactions, are investigated.
Measurement of the time evolution of the magnetization in a controlled LMSZ scenario can furnish information on the relative weights of the three kinds of couplings describing the spin
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It has been theoretically demonstrated that two spins (qubits or qutrits),
coupled by exchange interaction only, undergo a coupling-based joint
Landau-Majorana-St\"uckelberg-Zener (LMSZ) transition when a linear ramp acts
upon one of the two spins. Such a transition, under appropriate conditions on
the parameters, drives the two-spin system toward a maximally entangled state.
In this paper, effects on the quantum dynamics of the two qudits, stemming from
the Dzyaloshinskii-Moriya (DM) and dipole-dipole (d-d) interactions, are
investigated qualitatively and quantitatively. The enriched Hamiltonian model
of the two spins, shares with the previous microscopic one the same C2-symmetry
which once more brings about an exact treatment of the new quantum dynamical
problem. This paper transparently reveals that the DM and d-d interactions
generate independent, enhancing or hindering, modifications in the dynamical
behaviour predicted for the two spins coupled exclusively by the exchange
interaction. It is worthy noticing that, on the basis of the theory here
developed, the measurement of the time evolution of the magnetization in a
controlled LMSZ scenario, can furnish information on the relative weights of
the three kinds of couplings describing the spin system. This possibility is
very important since it allows in principle to legitimate the choice of the
microscopic model to be adopted in a given physical scenario.
Related papers
- Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Scalable spin squeezing in two-dimensional arrays of dipolar large-$S$
spins [0.0]
We show that spin-spin interactions lead to scalable spin squeezing along the non-equilibrium unitary evolution in a coherent spin state.
For sufficiently small quadratic shifts, the spin squeezing dynamics is akin to that produced by the paradigmatic one-axis-twisting (OAT) model.
Spin squeezing with OAT-like scaling is shown to be protected by the robustness of long-range ferromagnetic order to quadratic shifts.
arXiv Detail & Related papers (2023-09-11T10:32:24Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Emergence of Spinmerism for Molecular Spin-Qubits Generation [0.0]
Strategy combining spincrossover metal ions and radical is proposed from a model Hamiltonian first restricted to exchange interactions.
Spin states structures emerge from the linkage of a singlet/triplet commutable metal centre with two doublet-radical.
Study provides insights into spin-coupled compounds and inspiration for the development of molecular spin-qubits.
arXiv Detail & Related papers (2022-06-08T15:54:32Z) - Spin-spin coupling-based quantum and classical phase transitions in
two-impurity spin-boson models [55.41644538483948]
Two-interacting-impurity spin-boson models with vanishing transverse fields on the spin-pair are studied.
The dynamics of the magnetization is analysed for different levels of (an)isotropy.
arXiv Detail & Related papers (2022-05-19T08:01:03Z) - Effects of critical correlations on quantum percolation in two
dimensions [0.0]
We consider a two-dimensional tight-binding model that interacts with a background of classical spins in thermal equilibrium.
To capture the salient features of the classical transition, we focus on the strong coupling limit.
We provide evidence that the classical phase transition might induce a delocalization-localization transition in the quantum system at certain energies.
arXiv Detail & Related papers (2022-03-28T18:00:01Z) - Dressed-state control of effective dipolar interaction between
strongly-coupled solid-state spins [1.2314765641075438]
We present a dressed-state approach to control the effective dipolar coupling between solid-state spins.
We demonstrate this scheme experimentally using two strongly-coupled nitrogen vacancy (NV) centers in diamond.
arXiv Detail & Related papers (2022-03-15T02:58:31Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Spin squeezing from bilinear spin-spin interactions: two simple theorems [0.0]
We demonstrate two simple theorems about squeezing induced by bilinear spin-spin interactions.
We show that squeezing captures the first form of quantum correlations.
arXiv Detail & Related papers (2021-06-14T14:36:02Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.