Probabilistic self-learning framework for Low-dose CT Denoising
- URL: http://arxiv.org/abs/2006.00327v2
- Date: Fri, 22 Jan 2021 04:41:30 GMT
- Title: Probabilistic self-learning framework for Low-dose CT Denoising
- Authors: Ti Bai, Dan Nguyen, Biling Wang and Steve Jiang
- Abstract summary: Decreasing the exposure can reduce the dose and hence the radiation-related risk.
Supervised deep learning can be used to train a neural network to denoise the low-dose CT (LDCT)
- Score: 1.8734449181723827
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the indispensable role of X-ray computed tomography (CT) in
diagnostic medicine field, the associated ionizing radiation is still a major
concern considering that it may cause genetic and cancerous diseases.
Decreasing the exposure can reduce the dose and hence the radiation-related
risk, but will also induce higher quantum noise. Supervised deep learning can
be used to train a neural network to denoise the low-dose CT (LDCT). However,
its success requires massive pixel-wise paired LDCT and normal-dose CT (NDCT)
images, which are rarely available in real practice. To alleviate this problem,
in this paper, a shift-invariant property based neural network was devised to
learn the inherent pixel correlations and also the noise distribution by only
using the LDCT images, shaping into our probabilistic self-learning framework.
Experimental results demonstrated that the proposed method outperformed the
competitors, producing an enhanced LDCT image that has similar image style as
the routine NDCT which is highly-preferable in clinic practice.
Related papers
- WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising [74.14134385961775]
We introduce a novel self-supervised CT image denoising method called WIA-LD2ND, only using NDCT data.
WIA-LD2ND comprises two modules: Wavelet-based Image Alignment (WIA) and Frequency-Aware Multi-scale Loss (FAM)
arXiv Detail & Related papers (2024-03-18T11:20:11Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - UMedNeRF: Uncertainty-aware Single View Volumetric Rendering for Medical
Neural Radiance Fields [38.62191342903111]
We propose an Uncertainty-aware MedNeRF (UMedNeRF) network based on generated radiation fields.
We show the results of CT projection rendering with a single X-ray and compare our method with other methods based on generated radiation fields.
arXiv Detail & Related papers (2023-11-10T02:47:15Z) - Low-Dose CT Image Enhancement Using Deep Learning [0.0]
It is preferable to use as low a dose of ionizing radiation as possible, particularly in computed tomography (CT) imaging systems.
A popular method for radiation dose reduction in CT imaging is known as the quarter-dose technique.
Recent and popular deep-learning approaches provide an intriguing possibility of image enhancement for low-dose artifacts.
arXiv Detail & Related papers (2023-10-31T08:34:33Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Self Supervised Low Dose Computed Tomography Image Denoising Using
Invertible Network Exploiting Inter Slice Congruence [20.965610734723636]
This study proposes a novel method for self-supervised low-dose CT denoising to alleviate the requirement of paired LDCT and NDCT images.
We have trained an invertible neural network to minimize the pixel-based mean square distance between a noisy slice and the average of its two immediate adjacent noisy slices.
arXiv Detail & Related papers (2022-11-03T07:16:18Z) - Self-supervised Physics-based Denoising for Computed Tomography [2.2758845733923687]
Computed Tomography (CT) imposes risk on the patients due to its inherent X-ray radiation.
Lowering the radiation dose reduces the health risks but leads to noisier measurements, which decreases the tissue contrast and causes artifacts in CT images.
Modern deep learning noise suppression methods alleviate the challenge but require low-noise-high-noise CT image pairs for training.
We introduce a new self-supervised approach for CT denoising Noise2NoiseTD-ANM that can be trained without the high-dose CT projection ground truth images.
arXiv Detail & Related papers (2022-11-01T20:58:50Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Total-Body Low-Dose CT Image Denoising using Prior Knowledge Transfer
Technique with Contrastive Regularization Mechanism [4.998352078907441]
Low radiation dose may result in increased noise and artifacts, which greatly affected the clinical diagnosis.
To obtain high-quality Total-body Low-dose CT (LDCT) images, previous deep-learning-based research work has introduced various network architectures.
In this paper, we propose a novel intra-task knowledge transfer method that leverages the distilled knowledge from NDCT images.
arXiv Detail & Related papers (2021-12-01T06:46:38Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - No-reference denoising of low-dose CT projections [2.7716102039510564]
Low-dose computed tomography (LDCT) became a clear trend in radiology with an aspiration to refrain from delivering excessive X-ray radiation to the patients.
The reduction of the radiation dose decreases the risks to the patients but raises the noise level, affecting the quality of the images and their ultimate diagnostic value.
One mitigation option is to consider pairs of low-dose and high-dose CT projections to train a denoising model using deep learning algorithms; however, such pairs are rarely available in practice.
In this paper, we present a new self-supervised method for CT denoising. Unlike existing self-supervised
arXiv Detail & Related papers (2021-02-03T13:51:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.