No-reference denoising of low-dose CT projections
- URL: http://arxiv.org/abs/2102.02662v1
- Date: Wed, 3 Feb 2021 13:51:33 GMT
- Title: No-reference denoising of low-dose CT projections
- Authors: Elvira Zainulina, Alexey Chernyavskiy, Dmitry V. Dylov
- Abstract summary: Low-dose computed tomography (LDCT) became a clear trend in radiology with an aspiration to refrain from delivering excessive X-ray radiation to the patients.
The reduction of the radiation dose decreases the risks to the patients but raises the noise level, affecting the quality of the images and their ultimate diagnostic value.
One mitigation option is to consider pairs of low-dose and high-dose CT projections to train a denoising model using deep learning algorithms; however, such pairs are rarely available in practice.
In this paper, we present a new self-supervised method for CT denoising. Unlike existing self-supervised
- Score: 2.7716102039510564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-dose computed tomography (LDCT) became a clear trend in radiology with an
aspiration to refrain from delivering excessive X-ray radiation to the
patients. The reduction of the radiation dose decreases the risks to the
patients but raises the noise level, affecting the quality of the images and
their ultimate diagnostic value. One mitigation option is to consider pairs of
low-dose and high-dose CT projections to train a denoising model using deep
learning algorithms; however, such pairs are rarely available in practice. In
this paper, we present a new self-supervised method for CT denoising. Unlike
existing self-supervised approaches, the proposed method requires only noisy CT
projections and exploits the connections between adjacent images. The
experiments carried out on an LDCT dataset demonstrate that our method is
almost as accurate as the supervised approach, while also outperforming the
considered self-supervised denoising methods.
Related papers
- WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising [74.14134385961775]
We introduce a novel self-supervised CT image denoising method called WIA-LD2ND, only using NDCT data.
WIA-LD2ND comprises two modules: Wavelet-based Image Alignment (WIA) and Frequency-Aware Multi-scale Loss (FAM)
arXiv Detail & Related papers (2024-03-18T11:20:11Z) - Gadolinium dose reduction for brain MRI using conditional deep learning [66.99830668082234]
Two main challenges for these approaches are the accurate prediction of contrast enhancement and the synthesis of realistic images.
We address both challenges by utilizing the contrast signal encoded in the subtraction images of pre-contrast and post-contrast image pairs.
We demonstrate the effectiveness of our approach on synthetic and real datasets using various scanners, field strengths, and contrast agents.
arXiv Detail & Related papers (2024-03-06T08:35:29Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Diffusion Denoising for Low-Dose-CT Model [0.0]
We introduce Denoising Diffusion LDCT Model, dubbed as DDLM, generating noise-free CT image using conditioned sampling.
Experiments on LDCT images have shown comparable performance of DDLM using less inference time, surpassing other state-of-the-art methods.
arXiv Detail & Related papers (2023-01-27T01:11:42Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - On the Benefit of Dual-domain Denoising in a Self-supervised Low-dose CT
Setting [6.450514665591633]
Data-driven image denoising algorithms were proposed to restore image quality in low-dose acquisitions.
We present an end-to-end trainable CT reconstruction pipeline that contains denoising operators in both the projection and the image domain.
arXiv Detail & Related papers (2022-11-02T13:37:59Z) - Self-supervised Physics-based Denoising for Computed Tomography [2.2758845733923687]
Computed Tomography (CT) imposes risk on the patients due to its inherent X-ray radiation.
Lowering the radiation dose reduces the health risks but leads to noisier measurements, which decreases the tissue contrast and causes artifacts in CT images.
Modern deep learning noise suppression methods alleviate the challenge but require low-noise-high-noise CT image pairs for training.
We introduce a new self-supervised approach for CT denoising Noise2NoiseTD-ANM that can be trained without the high-dose CT projection ground truth images.
arXiv Detail & Related papers (2022-11-01T20:58:50Z) - Noise Conscious Training of Non Local Neural Network powered by Self
Attentive Spectral Normalized Markovian Patch GAN for Low Dose CT Denoising [20.965610734723636]
Deep learning-based technique has emerged as a dominant method for low dose CT(LDCT) denoising.
In this study, we propose a novel convolutional module as the first attempt to utilize neighborhood similarity of CT images for denoising tasks.
Next, we moved towards the problem of non-stationarity of CT noise and introduced a new noise aware mean square error loss for LDCT denoising.
arXiv Detail & Related papers (2020-11-11T10:44:52Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
We present a novel way to improve the quality of self-supervised denoising.
We assume the clean image to be the result of a convolution with a point spread function (PSF) and explicitly include this operation at the end of our neural network.
arXiv Detail & Related papers (2020-08-19T13:06:24Z) - Self-supervised Dynamic CT Perfusion Image Denoising with Deep Neural
Networks [6.167259271197635]
Dynamic computed tomography (CTP) imaging is a promising approach for acute ischemic stroke diagnosis and evaluation.
Hemodynamic parametric maps of cerebral parenchyma are calculated from repeated CT scans of the first pass of iodinated contrast through the brain.
It is necessary to reduce the dose of perfusion for routine applications due to the high radiation exposure from the repeated scans, where image denoising is necessary to achieve a reliable diagnosis.
arXiv Detail & Related papers (2020-05-19T21:44:07Z) - Simultaneous Skull Conductivity and Focal Source Imaging from EEG
Recordings with the help of Bayesian Uncertainty Modelling [77.34726150561087]
We propose a statistical method based on the Bayesian approximation error approach to compensate for source imaging errors due to the unknown skull conductivity.
Results indicate clear improvements in the source localization accuracy and feasible skull conductivity estimates.
arXiv Detail & Related papers (2020-01-31T21:33:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.