Entropy Decision Fusion for Smartphone Sensor based Human Activity
Recognition
- URL: http://arxiv.org/abs/2006.00367v1
- Date: Sat, 30 May 2020 21:09:38 GMT
- Title: Entropy Decision Fusion for Smartphone Sensor based Human Activity
Recognition
- Authors: Olasimbo Ayodeji Arigbabu
- Abstract summary: We present an approach for fusing convolutional neural network, recurrent convolutional network, and support vector machine by computing.
Experiments are conducted on two benchmark datasets, UCI-HAR and WISDM.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human activity recognition serves an important part in building continuous
behavioral monitoring systems, which are deployable for visual surveillance,
patient rehabilitation, gaming, and even personally inclined smart homes. This
paper demonstrates our efforts to develop a collaborative decision fusion
mechanism for integrating the predicted scores from multiple learning
algorithms trained on smartphone sensor based human activity data. We present
an approach for fusing convolutional neural network, recurrent convolutional
network, and support vector machine by computing and fusing the relative
weighted scores from each classifier based on Tsallis entropy to improve human
activity recognition performance. To assess the suitability of this approach,
experiments are conducted on two benchmark datasets, UCI-HAR and WISDM. The
recognition results attained using the proposed approach are comparable to
existing methods.
Related papers
- Sensor Data Augmentation from Skeleton Pose Sequences for Improving Human Activity Recognition [5.669438716143601]
Human Activity Recognition (HAR) has not fully capitalized on the proliferation of deep learning.
We propose a novel approach to improve wearable sensor-based HAR by introducing a pose-to-sensor network model.
Our contributions include the integration of simultaneous training, direct pose-to-sensor generation, and a comprehensive evaluation on the MM-Fit dataset.
arXiv Detail & Related papers (2024-04-25T10:13:18Z) - A Real-time Human Pose Estimation Approach for Optimal Sensor Placement
in Sensor-based Human Activity Recognition [63.26015736148707]
This paper introduces a novel methodology to resolve the issue of optimal sensor placement for Human Activity Recognition.
The derived skeleton data provides a unique strategy for identifying the optimal sensor location.
Our findings indicate that the vision-based method for sensor placement offers comparable results to the conventional deep learning approach.
arXiv Detail & Related papers (2023-07-06T10:38:14Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
This contribution statistically curates the training data to assess to what degree the physical characteristics of humans influence HAR performance.
We evaluate the performance of a state-of-the-art convolutional neural network on two HAR datasets that vary in the sensors, activities, and recording for time-series HAR.
arXiv Detail & Related papers (2023-01-19T12:33:50Z) - TASKED: Transformer-based Adversarial learning for human activity
recognition using wearable sensors via Self-KnowledgE Distillation [6.458496335718508]
We propose a novel Transformer-based Adversarial learning framework for human activity recognition using wearable sensors via Self-KnowledgE Distillation (TASKED)
In the proposed method, we adopt the teacher-free self-knowledge distillation to improve the stability of the training procedure and the performance of human activity recognition.
arXiv Detail & Related papers (2022-09-14T11:08:48Z) - Non-local Graph Convolutional Network for joint Activity Recognition and
Motion Prediction [2.580765958706854]
3D skeleton-based motion prediction and activity recognition are two interwoven tasks in human behaviour analysis.
We propose a new way to combine the advantages of both graph convolutional neural networks and recurrent neural networks for joint human motion prediction and activity recognition.
arXiv Detail & Related papers (2021-08-03T14:07:10Z) - Federated Learning with Heterogeneous Labels and Models for Mobile
Activity Monitoring [0.7106986689736827]
On-device Federated Learning proves to be an effective approach for distributed and collaborative machine learning.
We propose a framework for federated label-based aggregation, which leverages overlapping information gain across activities.
Empirical evaluation with the Heterogeneity Human Activity Recognition (HHAR) dataset on Raspberry Pi 2 indicates an average deterministic accuracy increase of at least 11.01%.
arXiv Detail & Related papers (2020-12-04T11:44:17Z) - Towards Interaction Detection Using Topological Analysis on Neural
Networks [55.74562391439507]
In neural networks, any interacting features must follow a strongly weighted connection to common hidden units.
We propose a new measure for quantifying interaction strength, based upon the well-received theory of persistent homology.
A Persistence Interaction detection(PID) algorithm is developed to efficiently detect interactions.
arXiv Detail & Related papers (2020-10-25T02:15:24Z) - Self-supervised Human Activity Recognition by Learning to Predict
Cross-Dimensional Motion [16.457778420360537]
We propose the use of self-supervised learning for human activity recognition with smartphone accelerometer data.
First, the representations of unlabeled input signals are learned by training a deep convolutional neural network to predict a segment of accelerometer values.
For this task, we add a number of fully connected layers to the end of the frozen network and train the added layers with labeled accelerometer signals to learn to classify human activities.
arXiv Detail & Related papers (2020-10-21T02:14:31Z) - Identity-Aware Attribute Recognition via Real-Time Distributed Inference
in Mobile Edge Clouds [53.07042574352251]
We design novel models for pedestrian attribute recognition with re-ID in an MEC-enabled camera monitoring system.
We propose a novel inference framework with a set of distributed modules, by jointly considering the attribute recognition and person re-ID.
We then devise a learning-based algorithm for the distributions of the modules of the proposed distributed inference framework.
arXiv Detail & Related papers (2020-08-12T12:03:27Z) - Uncertainty Quantification for Deep Context-Aware Mobile Activity
Recognition and Unknown Context Discovery [85.36948722680822]
We develop a context-aware mixture of deep models termed the alpha-beta network.
We improve accuracy and F score by 10% by identifying high-level contexts.
In order to ensure training stability, we have used a clustering-based pre-training in both public and in-house datasets.
arXiv Detail & Related papers (2020-03-03T19:35:34Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
It is crucial that the machine should be able to recognize the emotional state of the user with high accuracy.
Deep neural networks have been used with great success in recognizing emotions.
We present a new model for continuous emotion recognition based on facial expression recognition.
arXiv Detail & Related papers (2020-01-31T17:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.