Non-local Graph Convolutional Network for joint Activity Recognition and
Motion Prediction
- URL: http://arxiv.org/abs/2108.01518v1
- Date: Tue, 3 Aug 2021 14:07:10 GMT
- Title: Non-local Graph Convolutional Network for joint Activity Recognition and
Motion Prediction
- Authors: Dianhao Zhang, Ngo Anh Vien, Mien Van, Sean McLoone
- Abstract summary: 3D skeleton-based motion prediction and activity recognition are two interwoven tasks in human behaviour analysis.
We propose a new way to combine the advantages of both graph convolutional neural networks and recurrent neural networks for joint human motion prediction and activity recognition.
- Score: 2.580765958706854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D skeleton-based motion prediction and activity recognition are two
interwoven tasks in human behaviour analysis. In this work, we propose a motion
context modeling methodology that provides a new way to combine the advantages
of both graph convolutional neural networks and recurrent neural networks for
joint human motion prediction and activity recognition. Our approach is based
on using an LSTM encoder-decoder and a non-local feature extraction attention
mechanism to model the spatial correlation of human skeleton data and temporal
correlation among motion frames. The proposed network can easily include two
output branches, one for Activity Recognition and one for Future Motion
Prediction, which can be jointly trained for enhanced performance. Experimental
results on Human 3.6M, CMU Mocap and NTU RGB-D datasets show that our proposed
approach provides the best prediction capability among baseline LSTM-based
methods, while achieving comparable performance to other state-of-the-art
methods.
Related papers
- Spatio-temporal MLP-graph network for 3D human pose estimation [8.267311047244881]
Graph convolutional networks and their variants have shown significant promise in 3D human pose estimation.
We introduce a new weighted Jacobi feature rule obtained through graph filtering with implicit propagation fairing.
We also employ adjacency modulation with the aim of learning meaningful correlations beyond defined between body joints.
arXiv Detail & Related papers (2023-08-29T14:00:55Z) - Motion-Scenario Decoupling for Rat-Aware Video Position Prediction:
Strategy and Benchmark [49.58762201363483]
We introduce RatPose, a bio-robot motion prediction dataset constructed by considering the influence factors of individuals and environments.
We propose a Dual-stream Motion-Scenario Decoupling framework that effectively separates scenario-oriented and motion-oriented features.
We demonstrate significant performance improvements of the proposed textitDMSD framework on different difficulty-level tasks.
arXiv Detail & Related papers (2023-05-17T14:14:31Z) - Data-driven modelling of brain activity using neural networks, Diffusion
Maps, and the Koopman operator [0.0]
We propose a machine-learning approach to model long-term out-of-sample dynamics of brain activity from task-dependent fMRI data.
We use Diffusion maps (DMs) to discover a set of variables that parametrize the low-dimensional manifold on which the emergent high-dimensional fMRI time series evolve.
We construct reduced-order-models (ROMs) on the embedded manifold via two techniques: Feedforward Neural Networks (FNNs) and the Koopman operator.
arXiv Detail & Related papers (2023-04-24T09:08:12Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Skeletal Human Action Recognition using Hybrid Attention based Graph
Convolutional Network [3.261599248682793]
We propose a new adaptive spatial attention layer that extends local attention map to global based on relative distance and relative angle information.
We design a new initial graph adjacency matrix that connects head, hands and feet, which shows visible improvement in terms of action recognition accuracy.
The proposed model is evaluated on two large-scale and challenging datasets in the field of human activities in daily life.
arXiv Detail & Related papers (2022-07-12T12:22:21Z) - Joint-bone Fusion Graph Convolutional Network for Semi-supervised
Skeleton Action Recognition [65.78703941973183]
We propose a novel correlation-driven joint-bone fusion graph convolutional network (CD-JBF-GCN) as an encoder and use a pose prediction head as a decoder.
Specifically, the CD-JBF-GC can explore the motion transmission between the joint stream and the bone stream.
The pose prediction based auto-encoder in the self-supervised training stage allows the network to learn motion representation from unlabeled data.
arXiv Detail & Related papers (2022-02-08T16:03:15Z) - Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based
Action Recognition [49.163326827954656]
We propose a novel multi-granular-temporal graph network for skeleton-based action classification.
We develop a dual-head graph network consisting of two inter-leaved branches, which enables us to extract at least two-temporal resolutions.
We conduct extensive experiments on three large-scale datasets.
arXiv Detail & Related papers (2021-08-10T09:25:07Z) - Multi-level Motion Attention for Human Motion Prediction [132.29963836262394]
We study the use of different types of attention, computed at joint, body part, and full pose levels.
Our experiments on Human3.6M, AMASS and 3DPW validate the benefits of our approach for both periodical and non-periodical actions.
arXiv Detail & Related papers (2021-06-17T08:08:11Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
Graphal networks (GCNs) promising performance in skeleton-based human action recognition by modeling a sequence of skeletons as a graph.
Most of the recently proposed G-temporal-based methods improve the performance by learning the graph structure at each layer of the network.
arXiv Detail & Related papers (2020-11-07T19:03:04Z) - Entropy Decision Fusion for Smartphone Sensor based Human Activity
Recognition [0.0]
We present an approach for fusing convolutional neural network, recurrent convolutional network, and support vector machine by computing.
Experiments are conducted on two benchmark datasets, UCI-HAR and WISDM.
arXiv Detail & Related papers (2020-05-30T21:09:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.