Momentum-based variance-reduced proximal stochastic gradient method for
composite nonconvex stochastic optimization
- URL: http://arxiv.org/abs/2006.00425v3
- Date: Fri, 29 Apr 2022 11:45:38 GMT
- Title: Momentum-based variance-reduced proximal stochastic gradient method for
composite nonconvex stochastic optimization
- Authors: Yangyang Xu and Yibo Xu
- Abstract summary: gradient learning methods (SGMs) have been extensively used for solving problems or large-scale machine learning problems.
We propose a new SGM, PStorm, for solving nonsmooth problems.
- Score: 8.014215296763435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastic gradient methods (SGMs) have been extensively used for solving
stochastic problems or large-scale machine learning problems. Recent works
employ various techniques to improve the convergence rate of SGMs for both
convex and nonconvex cases. Most of them require a large number of samples in
some or all iterations of the improved SGMs. In this paper, we propose a new
SGM, named PStorm, for solving nonconvex nonsmooth stochastic problems. With a
momentum-based variance reduction technique, PStorm can achieve the optimal
complexity result $O(\varepsilon^{-3})$ to produce a stochastic
$\varepsilon$-stationary solution, if a mean-squared smoothness condition
holds. Different from existing optimal methods, PStorm can achieve the
${O}(\varepsilon^{-3})$ result by using only one or $O(1)$ samples in every
update. With this property, PStorm can be applied to online learning problems
that favor real-time decisions based on one or $O(1)$ new observations. In
addition, for large-scale machine learning problems, PStorm can generalize
better by small-batch training than other optimal methods that require
large-batch training and the vanilla SGM, as we demonstrate on training a
sparse fully-connected neural network and a sparse convolutional neural
network.
Related papers
- Accelerated Stochastic Min-Max Optimization Based on Bias-corrected Momentum [30.01198677588252]
First-order algorithms require at least $mathcalO(varepsilonepsilon-4)$ complexity to find an $varepsilon-stationary point.
We introduce novel momentum algorithms utilizing efficient variable complexity.
The effectiveness of the method is validated through robust logistic regression using real-world datasets.
arXiv Detail & Related papers (2024-06-18T20:14:52Z) - MGDA Converges under Generalized Smoothness, Provably [27.87166415148172]
Multi-objective optimization (MOO) is receiving more attention in various fields such as multi-task learning.
Recent works provide some effective algorithms with theoretical analysis but they are limited by the standard $L$-smooth or bounded-gradient assumptions.
We study a more general and realistic class of generalized $ell$-smooth loss functions, where $ell$ is a general non-decreasing function of gradient norm.
arXiv Detail & Related papers (2024-05-29T18:36:59Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Gauss-Newton Temporal Difference Learning with Nonlinear Function Approximation [11.925232472331494]
A Gauss-Newton Temporal Difference (GNTD) learning method is proposed to solve the Q-learning problem with nonlinear function approximation.
In each iteration, our method takes one Gauss-Newton (GN) step to optimize a variant of Mean-Squared Bellman Error (MSBE)
We validate our method via extensive experiments in several RL benchmarks, where GNTD exhibits both higher rewards and faster convergence than TD-type methods.
arXiv Detail & Related papers (2023-02-25T14:14:01Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
Many real-world problems have complicated non functional constraints and use a large number of data points.
Our proposed method outperforms an existing method with the previously best-known result.
arXiv Detail & Related papers (2022-12-19T14:48:54Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
We propose a novel method named Multi-block-probe Variance Reduced (MSVR) to alleviate the complexity of compositional problems.
Our results improve upon prior ones in several aspects, including the order of sample complexities and dependence on strongity.
arXiv Detail & Related papers (2022-07-18T12:03:26Z) - Randomized Stochastic Variance-Reduced Methods for Stochastic Bilevel
Optimization [62.87181271021217]
We consider non-SBO problems that have many applications in machine learning.
This paper proposes fast randomized algorithms for non-SBO problems.
arXiv Detail & Related papers (2021-05-05T18:28:42Z) - Gradient Free Minimax Optimization: Variance Reduction and Faster
Convergence [120.9336529957224]
In this paper, we denote the non-strongly setting on the magnitude of a gradient-free minimax optimization problem.
We show that a novel zeroth-order variance reduced descent algorithm achieves the best known query complexity.
arXiv Detail & Related papers (2020-06-16T17:55:46Z) - FANOK: Knockoffs in Linear Time [73.5154025911318]
We describe a series of algorithms that efficiently implement Gaussian model-X knockoffs to control the false discovery rate on large scale feature selection problems.
We test our methods on problems with $p$ as large as $500,000$.
arXiv Detail & Related papers (2020-06-15T21:55:34Z) - Stochastic Proximal Gradient Algorithm with Minibatches. Application to
Large Scale Learning Models [2.384873896423002]
We develop and analyze minibatch variants of gradient algorithm for general composite objective functions with nonsmooth components.
We provide complexity for constant and variable stepsize iteration policies obtaining that, for minibatch size $N$, after $mathcalO(frac1Nepsilon)$ $epsilon-$subity is attained in expected quadratic distance to optimal solution.
arXiv Detail & Related papers (2020-03-30T10:43:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.