FANOK: Knockoffs in Linear Time
- URL: http://arxiv.org/abs/2006.08790v1
- Date: Mon, 15 Jun 2020 21:55:34 GMT
- Title: FANOK: Knockoffs in Linear Time
- Authors: Armin Askari, Quentin Rebjock, Alexandre d'Aspremont and Laurent El
Ghaoui
- Abstract summary: We describe a series of algorithms that efficiently implement Gaussian model-X knockoffs to control the false discovery rate on large scale feature selection problems.
We test our methods on problems with $p$ as large as $500,000$.
- Score: 73.5154025911318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We describe a series of algorithms that efficiently implement Gaussian
model-X knockoffs to control the false discovery rate on large scale feature
selection problems. Identifying the knockoff distribution requires solving a
large scale semidefinite program for which we derive several efficient methods.
One handles generic covariance matrices, has a complexity scaling as $O(p^3)$
where $p$ is the ambient dimension, while another assumes a rank $k$ factor
model on the covariance matrix to reduce this complexity bound to $O(pk^2)$. We
also derive efficient procedures to both estimate factor models and sample
knockoff covariates with complexity linear in the dimension. We test our
methods on problems with $p$ as large as $500,000$.
Related papers
- Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Computational-Statistical Gaps for Improper Learning in Sparse Linear Regression [4.396860522241307]
We show that an efficient learning algorithm for sparse linear regression can be used to solve sparse PCA problems with a negative spike.
We complement our reduction with low-degree and statistical query lower bounds for the sparse problems from which we reduce.
arXiv Detail & Related papers (2024-02-21T19:55:01Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Sparse Gaussian Graphical Models with Discrete Optimization:
Computational and Statistical Perspectives [8.403841349300103]
We consider the problem of learning a sparse graph underlying an undirected Gaussian graphical model.
We propose GraphL0BnB, a new estimator based on an $ell_0$-penalized version of the pseudolikelihood function.
Our numerical experiments on real/synthetic datasets suggest that our method can solve, to near-optimality, problem instances with $p = 104$.
arXiv Detail & Related papers (2023-07-18T15:49:02Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Feature Adaptation for Sparse Linear Regression [20.923321050404827]
Sparse linear regression is a central problem in high-dimensional statistics.
We provide an algorithm that adapts to tolerate a small number of approximate dependencies.
Our framework fits into a broader framework of feature adaptation for sparse linear regression.
arXiv Detail & Related papers (2023-05-26T12:53:13Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
General tools for designing efficient private estimation algorithms.
First efficient $(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery.
arXiv Detail & Related papers (2023-01-11T09:12:28Z) - Empirical Risk Minimization in the Non-interactive Local Model of
Differential Privacy [26.69391745812235]
We study the Empirical Risk Minimization (ERM) problem in the noninteractive Local Differential Privacy (LDP) model.
Previous research indicates that the sample complexity, to achieve error $alpha, needs to be depending on dimensionality $p$ for general loss functions.
arXiv Detail & Related papers (2020-11-11T17:48:00Z) - Convergence of Sparse Variational Inference in Gaussian Processes
Regression [29.636483122130027]
We show that a method with an overall computational cost of $mathcalO(log N)2D(loglog N)2)$ can be used to perform inference.
arXiv Detail & Related papers (2020-08-01T19:23:34Z) - Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal
Sample Complexity [67.02490430380415]
We show that model-based MARL achieves a sample complexity of $tilde O(|S||B|(gamma)-3epsilon-2)$ for finding the Nash equilibrium (NE) value up to some $epsilon$ error.
We also show that such a sample bound is minimax-optimal (up to logarithmic factors) if the algorithm is reward-agnostic, where the algorithm queries state transition samples without reward knowledge.
arXiv Detail & Related papers (2020-07-15T03:25:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.