論文の概要: When Does MAML Objective Have Benign Landscape?
- arxiv url: http://arxiv.org/abs/2006.00453v2
- Date: Thu, 10 Dec 2020 19:20:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 12:31:49.448856
- Title: When Does MAML Objective Have Benign Landscape?
- Title(参考訳): MAMLオブジェクトはいつ、ランドスケープに相応しいのか?
- Authors: Igor Molybog and Javad Lavaei
- Abstract要約: 本稿では,モデル非依存メタラーニング(MAML)アルゴリズムの背後にある最適化問題の複雑性について検討する。
本研究の目的は,共通構造を有する逐次的意思決定タスクにおけるMAMLのグローバルコンバージェンスを決定することである。
- 参考スコア(独自算出の注目度): 12.056495277232118
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paper studies the complexity of the optimization problem behind the
Model-Agnostic Meta-Learning (MAML) algorithm. The goal of the study is to
determine the global convergence of MAML on sequential decision-making tasks
possessing a common structure. We are curious to know when, if at all, the
benign landscape of the underlying tasks results in a benign landscape of the
corresponding MAML objective. For illustration, we analyze the landscape of the
MAML objective on LQR tasks to determine what types of similarities in their
structures enable the algorithm to converge to the globally optimal solution.
- Abstract(参考訳): 本稿では,モデル非依存メタラーニング(MAML)アルゴリズムの背後にある最適化問題の複雑性について検討する。
本研究の目的は,共通構造を有する逐次的意思決定タスクにおけるMAMLのグローバルコンバージェンスを決定することである。
基礎となるタスクの良質なランドスケープが、対応するmamlの目的の良質なランドスケープにいつつながるのか、私たちは知りたいのです。
図示として、LQRタスクにおけるMAML目標のランドスケープを分析し、その構造においてどの種類の類似性がアルゴリズムをグローバルに最適解に収束させるかを決定する。
関連論文リスト
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - Common pitfalls to avoid while using multiobjective optimization in machine learning [1.2499537119440245]
機械学習(ML)における多目的最適化(MOO)の適用の探求への関心が高まっている。
その可能性にもかかわらず、MOOを使いたいML実践者のエントリーレベルガイドとして機能する十分な文献が不足している。
従来の研究、特に深層学習におけるMOO(物理情報ニューラルネットワーク(PINN)を手がかりに)に関する研究を批判的にレビューし、MLにおけるMOOの原則をよりよく把握する必要性を強調した誤解を特定する。
論文 参考訳(メタデータ) (2024-05-02T17:12:25Z) - MOLE: Digging Tunnels Through Multimodal Multi-Objective Landscapes [0.0]
局所的に効率的な(LE)集合は、しばしば局所探索のトラップと見なされるが、決定空間において孤立されることは滅多にない。
Multi-Objective Gradient Sliding Algorithm (MOGSA)は、これらの重ね合わせを利用するアルゴリズムの概念である。
我々は,MMMOO問題におけるLE集合を効率的にモデル化し,活用できる新しいアルゴリズムであるMulti-Objective Landscape Explorer (MOLE)を提案する。
論文 参考訳(メタデータ) (2022-04-22T17:54:54Z) - MAML is a Noisy Contrastive Learner [72.04430033118426]
モデルに依存しないメタラーニング(MAML)は、今日では最も人気があり広く採用されているメタラーニングアルゴリズムの1つである。
我々は、MAMLの動作メカニズムに対する新たな視点を提供し、以下に示すように、MAMLは、教師付きコントラスト目的関数を用いたメタラーナーに類似している。
このような干渉を軽減するため, 単純だが効果的な手法であるゼロ化手法を提案する。
論文 参考訳(メタデータ) (2021-06-29T12:52:26Z) - Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and
Personalized Federated Learning [56.17603785248675]
モデルに依存しないメタラーニング (MAML) が人気のある研究分野となっている。
既存のMAMLアルゴリズムは、イテレーション毎にメタモデルを更新するためにいくつかのタスクとデータポイントをサンプリングすることで、エピソードのアイデアに依存している。
本稿では,MAMLのメモリベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-09T08:47:58Z) - How Does the Task Landscape Affect MAML Performance? [42.27488241647739]
モデル非依存メタラーニング(MAML)は非適応学習(NAL)よりも最適化が難しいことを示す。
簡単なタスクと難しいタスクの混合からなる線形回帰設定でこの問題を解析的に解決する。
また、これらの知見が2層ニューラルネットワークに適用可能であることを示唆する数値的および解析的な結果も提示する。
論文 参考訳(メタデータ) (2020-10-27T23:54:44Z) - On the Global Optimality of Model-Agnostic Meta-Learning [133.16370011229776]
モデル・ア・メタラーニング(MAML)は、メタラーニングを二段階最適化問題として定式化し、内部レベルが各サブタスクを、共有された事前に基づいて解決する。
学習と教師あり学習の両方においてMAMLが達成した定常点の最適性を特徴付ける。
論文 参考訳(メタデータ) (2020-06-23T17:33:14Z) - Theoretical Convergence of Multi-Step Model-Agnostic Meta-Learning [63.64636047748605]
一般的なマルチステップMAMLアルゴリズムに対して収束保証を提供するための新しい理論フレームワークを開発する。
特に,本研究の結果は,収束を保証するためには,内部段階のステップを逆比例して$N$の内段ステップを選択する必要があることを示唆している。
論文 参考訳(メタデータ) (2020-02-18T19:17:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。