論文の概要: Predicting Engagement in Video Lectures
- arxiv url: http://arxiv.org/abs/2006.00592v2
- Date: Wed, 10 Jun 2020 15:33:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 13:07:30.656057
- Title: Predicting Engagement in Video Lectures
- Title(参考訳): ビデオ講義におけるエンゲージメントの予測
- Authors: Sahan Bulathwela, Mar\'ia P\'erez-Ortiz, Aldo Lipani, Emine Yilmaz and
John Shawe-Taylor
- Abstract要約: 本稿では,文脈に依存しないエンゲージメントを予測するための,ビデオ講義の大規模データセットを提案する。
この課題を達成するために、クロスモーダルとモダリティ固有の特徴セットを提案する。
データ不足の場合、我々のアプローチを実演する。
- 参考スコア(独自算出の注目度): 24.415345855402624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The explosion of Open Educational Resources (OERs) in the recent years
creates the demand for scalable, automatic approaches to process and evaluate
OERs, with the end goal of identifying and recommending the most suitable
educational materials for learners. We focus on building models to find the
characteristics and features involved in context-agnostic engagement (i.e.
population-based), a seldom researched topic compared to other contextualised
and personalised approaches that focus more on individual learner engagement.
Learner engagement, is arguably a more reliable measure than popularity/number
of views, is more abundant than user ratings and has also been shown to be a
crucial component in achieving learning outcomes. In this work, we explore the
idea of building a predictive model for population-based engagement in
education. We introduce a novel, large dataset of video lectures for predicting
context-agnostic engagement and propose both cross-modal and modality-specific
feature sets to achieve this task. We further test different strategies for
quantifying learner engagement signals. We demonstrate the use of our approach
in the case of data scarcity. Additionally, we perform a sensitivity analysis
of the best performing model, which shows promising performance and can be
easily integrated into an educational recommender system for OERs.
- Abstract(参考訳): 近年のオープン・エデュケーショナル・リソース(OER)の爆発は、OERを処理・評価するためのスケーラブルで自動的なアプローチの需要を生み出し、学習者にとって最も適した教材を特定し、推薦することを目的としている。
個々の学習者のエンゲージメントに焦点をあてた他の文脈的、パーソナライズされたアプローチに比べて、ほとんど研究されていないトピックである、コンテキスト非依存のエンゲージメント(人口ベース)に関連する特徴や特徴を見つけるためのモデルを構築することに重点を置いています。
学習者のエンゲージメントは、人気/ビュー数よりも信頼性が高く、ユーザ評価よりも豊富であり、学習成果を達成する上でも重要な要素であることが示されている。
本研究では,教育における人口ベースエンゲージメントの予測モデルの構築について検討する。
本稿では,コンテキスト非依存な関与を予測するためのビデオ講義の新たな大規模データセットを提案し,この課題を実現するために,クロスモーダルとモダリティを特徴とする特徴セットを提案する。
さらに,学習者のエンゲージメントシグナルを定量化するための異なる戦略を検証した。
我々は、データ不足の場合、このアプローチの使用を実証する。
さらに,評価性能を示す最高の性能モデルの感度解析を行い,OERの教育推薦システムに容易に組み込めるようにした。
関連論文リスト
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト・イズ・キー (Context is Key) (CiK) は、時系列予測ベンチマークであり、様々な種類のテキストコンテキストと数値データをペアリングする。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
実験では、文脈情報の導入の重要性を強調し、LLMに基づく予測モデルを用いた場合の驚くべき性能を示すとともに、それらの重要な欠点を明らかにした。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - A General Model for Detecting Learner Engagement: Implementation and Evaluation [0.0]
本稿では,学習者のエンゲージメントレベルを検出するための特徴の選択と処理のための,汎用的で軽量なモデルを提案する。
本研究では,DAiSEEデータセットの映像を分析し,学習者のエンゲージメントのダイナミックな意義を捉えた。
提案モデルは,特定の実装において68.57%の精度を達成し,学習者のエンゲージメントレベルを検出する最先端モデルより優れている。
論文 参考訳(メタデータ) (2024-05-07T12:11:15Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
自己教師付き学習(SSL)では、アノテートラベルなしで補助的なタスクを通じて表現が学習される。
自己教師型学習のための生成潜在変数モデルを提案する。
対照的な方法を含む識別的SSLのいくつかのファミリーは、表現に匹敵する分布を誘導することを示した。
論文 参考訳(メタデータ) (2024-02-02T13:31:17Z) - Unveiling the Tapestry of Automated Essay Scoring: A Comprehensive
Investigation of Accuracy, Fairness, and Generalizability [5.426458555881673]
本研究では, AESモデルの精度, 公平性, 一般化可能性の複雑な関係を明らかにすることを目的とする。
我々は,9つのAES手法を評価し,その性能をオープンソースデータセット上で7つの指標を用いて評価した。
論文 参考訳(メタデータ) (2024-01-11T04:28:02Z) - Advancing Deep Active Learning & Data Subset Selection: Unifying
Principles with Information-Theory Intuitions [3.0539022029583953]
本論文は,ディープラーニングモデルのラベルとトレーニング効率を向上させることにより,ディープラーニングの実践性を高めることを目的とする。
本稿では,情報理論の原理に基づくデータサブセット選択手法,特にアクティブラーニングとアクティブサンプリングについて検討する。
論文 参考訳(メタデータ) (2024-01-09T01:41:36Z) - One-Shot Open Affordance Learning with Foundation Models [54.15857111929812]
私たちは、モデルがベースオブジェクトカテゴリ毎に1つの例でトレーニングされる、ワンショットのオープンアフォーダンスラーニング(OOAL)を紹介します。
本稿では,視覚的特徴と手頃なテキスト埋め込みとの整合性を高める,シンプルで効果的な設計の視覚言語フレームワークを提案する。
2つのアベイランスセグメンテーションのベンチマーク実験により、提案手法はトレーニングデータの1%未満で最先端のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2023-11-29T16:23:06Z) - Towards a General Pre-training Framework for Adaptive Learning in MOOCs [37.570119583573955]
異種学習要素を適切に活用した,データ観測と学習スタイル分析に基づく統合フレームワークを提案する。
授業の構造やテキスト,知識は,学生の非逐次学習行動に本質的に整合性があり,モデリングに有用であることがわかった。
論文 参考訳(メタデータ) (2022-07-18T13:18:39Z) - Can Population-based Engagement Improve Personalisation? A Novel Dataset
and Experiments [21.12546768556595]
VLEは、公開されている科学ビデオ講義から抽出されたコンテンツとビデオベースの特徴からなる、新しいデータセットである。
実験結果から,新たに提案したVLEデータセットがコンテキストに依存しないエンゲージメント予測モデルの構築につながることが示唆された。
構築したモデルとパーソナライズアルゴリズムを組み合わせる実験は、教育推薦者によるコールドスタート問題に対処する上で有望な改善を示す。
論文 参考訳(メタデータ) (2022-06-22T15:53:24Z) - Self-supervised Co-training for Video Representation Learning [103.69904379356413]
実例に基づく情報ノイズコントラスト推定訓練に意味クラス正の付加を施すことの利点について検討する。
本稿では,インフォネッションNCEの損失を改善するための,自己指導型協調学習手法を提案する。
本研究では,2つの下流タスク(行動認識とビデオ検索)における学習表現の質を評価する。
論文 参考訳(メタデータ) (2020-10-19T17:59:01Z) - Enhancing Dialogue Generation via Multi-Level Contrastive Learning [57.005432249952406]
質問に対する応答のきめ細かい品質をモデル化するマルチレベルコントラスト学習パラダイムを提案する。
Rank-aware (RC) ネットワークはマルチレベルコントラスト最適化の目的を構築するために設計されている。
本研究では,知識推論(KI)コンポーネントを構築し,学習中の参照からキーワードの知識を抽出し,そのような情報を活用して情報的単語の生成を促す。
論文 参考訳(メタデータ) (2020-09-19T02:41:04Z) - Learning From Multiple Experts: Self-paced Knowledge Distillation for
Long-tailed Classification [106.08067870620218]
我々は,LFME(Learning From Multiple Experts)と呼ばれる自己評価型知識蒸留フレームワークを提案する。
提案するLFMEフレームワークは,複数の'Experts'からの知識を集約して,統一された学生モデルを学ぶ。
提案手法は,最先端の手法に比べて優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2020-01-06T12:57:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。