EEG-TCNet: An Accurate Temporal Convolutional Network for Embedded
Motor-Imagery Brain-Machine Interfaces
- URL: http://arxiv.org/abs/2006.00622v1
- Date: Sun, 31 May 2020 21:45:45 GMT
- Title: EEG-TCNet: An Accurate Temporal Convolutional Network for Embedded
Motor-Imagery Brain-Machine Interfaces
- Authors: Thorir Mar Ingolfsson, Michael Hersche, Xiaying Wang, Nobuaki
Kobayashi, Lukas Cavigelli, Luca Benini
- Abstract summary: We propose EEG-TCNet, a novel temporal convolutional network (TCN) that achieves outstanding accuracy while requiring few trainable parameters.
Its low memory footprint and low computational complexity for inference make it suitable for embedded classification on resource-limited devices at the edge.
- Score: 15.07343602952606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, deep learning (DL) has contributed significantly to the
improvement of motor-imagery brain-machine interfaces (MI-BMIs) based on
electroencephalography(EEG). While achieving high classification accuracy, DL
models have also grown in size, requiring a vast amount of memory and
computational resources. This poses a major challenge to an embedded BMI
solution that guarantees user privacy, reduced latency, and low power
consumption by processing the data locally. In this paper, we propose
EEG-TCNet, a novel temporal convolutional network (TCN) that achieves
outstanding accuracy while requiring few trainable parameters. Its low memory
footprint and low computational complexity for inference make it suitable for
embedded classification on resource-limited devices at the edge. Experimental
results on the BCI Competition IV-2a dataset show that EEG-TCNet achieves
77.35% classification accuracy in 4-class MI. By finding the optimal network
hyperparameters per subject, we further improve the accuracy to 83.84%.
Finally, we demonstrate the versatility of EEG-TCNet on the Mother of All BCI
Benchmarks (MOABB), a large scale test benchmark containing 12 different EEG
datasets with MI experiments. The results indicate that EEG-TCNet successfully
generalizes beyond one single dataset, outperforming the current
state-of-the-art (SoA) on MOABB by a meta-effect of 0.25.
Related papers
- BiDense: Binarization for Dense Prediction [62.70804353158387]
BiDense is a generalized binary neural network (BNN) designed for efficient and accurate dense prediction tasks.
BiDense incorporates two key techniques: the Distribution-adaptive Binarizer (DAB) and the Channel-adaptive Full-precision Bypass (CFB)
arXiv Detail & Related papers (2024-11-15T16:46:04Z) - EEG_RL-Net: Enhancing EEG MI Classification through Reinforcement Learning-Optimised Graph Neural Networks [7.9035081192335115]
We present the EEG_RL-Net, an enhancement to the EEG_GLT-Net framework, which incorporates the trained EEG GCN Block from EEG_GLT-Net at an adjacency matrix density of 13.39%.
The EEG_RL-Net model showcases exceptional classification performance, achieving an unprecedented average accuracy of 96.40% across 20 subjects within 25 milliseconds.
arXiv Detail & Related papers (2024-04-26T13:09:50Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
We propose an efficient change detection framework, ELGC-Net, which leverages rich contextual information to precisely estimate change regions.
Our proposed ELGC-Net sets a new state-of-the-art performance in remote sensing change detection benchmarks.
We also introduce ELGC-Net-LW, a lighter variant with significantly reduced computational complexity, suitable for resource-constrained settings.
arXiv Detail & Related papers (2024-03-26T17:46:25Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - A Hybrid Brain-Computer Interface Using Motor Imagery and SSVEP Based on
Convolutional Neural Network [0.9176056742068814]
We propose a two-stream convolutional neural network (TSCNN) based hybrid brain-computer interface.
It combines steady-state visual evoked potential (SSVEP) and motor imagery (MI) paradigms.
TSCNN automatically learns to extract EEG features in the two paradigms in the training process.
arXiv Detail & Related papers (2022-12-10T12:34:36Z) - Data augmentation for learning predictive models on EEG: a systematic
comparison [79.84079335042456]
deep learning for electroencephalography (EEG) classification tasks has been rapidly growing in the last years.
Deep learning for EEG classification tasks has been limited by the relatively small size of EEG datasets.
Data augmentation has been a key ingredient to obtain state-of-the-art performances across applications such as computer vision or speech.
arXiv Detail & Related papers (2022-06-29T09:18:15Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Q-EEGNet: an Energy-Efficient 8-bit Quantized Parallel EEGNet
Implementation for Edge Motor-Imagery Brain--Machine Interfaces [16.381467082472515]
Motor-Imagery Brain--Machine Interfaces (MI-BMIs)promise direct and accessible communication between human brains and machines.
Deep learning models have emerged for classifying EEG signals.
These models often exceed the limitations of edge devices due to their memory and computational requirements.
arXiv Detail & Related papers (2020-04-24T12:29:03Z) - An Accurate EEGNet-based Motor-Imagery Brain-Computer Interface for
Low-Power Edge Computing [13.266626571886354]
This paper presents an accurate and robust embedded motor-imagery brain-computer interface (MI-BCI)
The proposed novel model, based on EEGNet, matches the requirements of memory footprint and computational resources of low-power microcontroller units (MCUs)
The scaled models are deployed on a commercial Cortex-M4F MCU taking 101ms and consuming 4.28mJ per inference for operating the smallest model, and on a Cortex-M7 with 44ms and 18.1mJ per inference for the medium-sized model.
arXiv Detail & Related papers (2020-03-31T19:52:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.