EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification
- URL: http://arxiv.org/abs/2101.10932v3
- Date: Mon, 8 Mar 2021 15:51:01 GMT
- Title: EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification
- Authors: Ce Zhang, Young-Keun Kim, Azim Eskandarian
- Abstract summary: This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
- Score: 123.93460670568554
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classification of EEG-based motor imagery (MI) is a crucial non-invasive
application in brain-computer interface (BCI) research. This paper proposes a
novel convolutional neural network (CNN) architecture for accurate and robust
EEG-based MI classification that outperforms the state-of-the-art methods. The
proposed CNN model, namely EEG-Inception, is built on the backbone of the
Inception-Time network, which showed to be highly efficient and accurate for
time-series classification. Also, the proposed network is an end-to-end
classification, as it takes the raw EEG signals as the input and does not
require complex EEG signal-preprocessing. Furthermore, this paper proposes a
novel data augmentation method for EEG signals to enhance the accuracy, at
least by 3%, and reduce overfitting with limited BCI datasets. The proposed
model outperforms all the state-of-the-art methods by achieving the average
accuracy of 88.4% and 88.6% on the 2008 BCI Competition IV 2a (four-classes)
and 2b datasets (binary-classes), respectively. Furthermore, it takes less than
0.025 seconds to test a sample suitable for real-time processing. Moreover, the
classification standard deviation for nine different subjects achieves the
lowest value of 5.5 for the 2b dataset and 7.1 for the 2a dataset, which
validates that the proposed method is highly robust. From the experiment
results, it can be inferred that the EEG-Inception network exhibits a strong
potential as a subject-independent classifier for EEG-based MI tasks.
Related papers
- BiDense: Binarization for Dense Prediction [62.70804353158387]
BiDense is a generalized binary neural network (BNN) designed for efficient and accurate dense prediction tasks.
BiDense incorporates two key techniques: the Distribution-adaptive Binarizer (DAB) and the Channel-adaptive Full-precision Bypass (CFB)
arXiv Detail & Related papers (2024-11-15T16:46:04Z) - Dual-TSST: A Dual-Branch Temporal-Spectral-Spatial Transformer Model for EEG Decoding [2.0721229324537833]
We propose a novel decoding architecture network with a dual-branch temporal-spectral-spatial transformer (Dual-TSST)
Our proposed Dual-TSST performs superiorly in various tasks, which achieves the promising EEG classification performance of average accuracy of 80.67%.
This study provides a new approach to high-performance EEG decoding, and has great potential for future CNN-Transformer based applications.
arXiv Detail & Related papers (2024-09-05T05:08:43Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - EEG-based Emotion Style Transfer Network for Cross-dataset Emotion
Recognition [45.26847258736848]
We propose an EEG-based Emotion Style Transfer Network (E2STN) to obtain EEG representations that contain the content information of source domain and the style information of target domain.
The E2STN can achieve the state-of-the-art performance on cross-dataset EEG emotion recognition tasks.
arXiv Detail & Related papers (2023-08-09T16:54:40Z) - A SPA-based Manifold Learning Framework for Motor Imagery EEG Data
Classification [2.4727719996518487]
This paper proposes a manifold learning framework to classify two types of EEG data from motor imagery (MI) tasks.
For feature extraction, it is implemented by Common Spatial Pattern (CSP) from the preprocessed EEG signals.
In the neighborhoods of the features for classification, the local approximation to the support of the data is obtained, and then the features are assigned to the classes with the closest support.
arXiv Detail & Related papers (2021-07-30T06:18:05Z) - CNN-based Approaches For Cross-Subject Classification in Motor Imagery:
From The State-of-The-Art to DynamicNet [0.2936007114555107]
Motor imagery (MI)-based brain-computer interface (BCI) systems are being increasingly employed to provide alternative means of communication and control.
accurately classifying MI from brain signals is essential to obtain reliable BCI systems.
Deep learning approaches have started to emerge as valid alternatives to standard machine learning techniques.
arXiv Detail & Related papers (2021-05-17T14:57:13Z) - Common Spatial Generative Adversarial Networks based EEG Data
Augmentation for Cross-Subject Brain-Computer Interface [4.8276709243429]
Cross-subject application of EEG-based brain-computer interface (BCI) has always been limited by large individual difference and complex characteristics that are difficult to perceive.
We propose a cross-subject EEG classification framework with a generative adversarial networks (GANs) based method named common spatial GAN (CS-GAN)
Our framework provides a promising way to deal with the cross-subject problem and promote the practical application of BCI.
arXiv Detail & Related papers (2021-02-08T10:37:03Z) - EEG-TCNet: An Accurate Temporal Convolutional Network for Embedded
Motor-Imagery Brain-Machine Interfaces [15.07343602952606]
We propose EEG-TCNet, a novel temporal convolutional network (TCN) that achieves outstanding accuracy while requiring few trainable parameters.
Its low memory footprint and low computational complexity for inference make it suitable for embedded classification on resource-limited devices at the edge.
arXiv Detail & Related papers (2020-05-31T21:45:45Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.