Multi-scale Cloud Detection in Remote Sensing Images using a Dual
Convolutional Neural Network
- URL: http://arxiv.org/abs/2006.00836v1
- Date: Mon, 1 Jun 2020 10:27:42 GMT
- Title: Multi-scale Cloud Detection in Remote Sensing Images using a Dual
Convolutional Neural Network
- Authors: Markku Luotamo, Sari Mets\"am\"aki, Arto Klami
- Abstract summary: CNN has advanced the state of the art in pixel-level classification of remote sensing images.
We propose an architecture of two cascaded CNN model components successively processing undersampled and full resolution images.
We achieve a 16% relative improvement in pixel accuracy over a CNN baseline based on patching.
- Score: 4.812718493682455
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Semantic segmentation by convolutional neural networks (CNN) has advanced the
state of the art in pixel-level classification of remote sensing images.
However, processing large images typically requires analyzing the image in
small patches, and hence features that have large spatial extent still cause
challenges in tasks such as cloud masking. To support a wider scale of spatial
features while simultaneously reducing computational requirements for large
satellite images, we propose an architecture of two cascaded CNN model
components successively processing undersampled and full resolution images. The
first component distinguishes between patches in the inner cloud area from
patches at the cloud's boundary region. For the cloud-ambiguous edge patches
requiring further segmentation, the framework then delegates computation to a
fine-grained model component. We apply the architecture to a cloud detection
dataset of complete Sentinel-2 multispectral images, approximately annotated
for minimal false negatives in a land use application. On this specific task
and data, we achieve a 16\% relative improvement in pixel accuracy over a CNN
baseline based on patching.
Related papers
- CLiSA: A Hierarchical Hybrid Transformer Model using Orthogonal Cross
Attention for Satellite Image Cloud Segmentation [5.178465447325005]
Deep learning algorithms have emerged as promising approach to solve image segmentation problems.
In this paper, we introduce a deep-learning model for effective cloud mask generation named CLiSA - Cloud segmentation via Lipschitz Stable Attention network.
We demonstrate both qualitative and quantitative outcomes for multiple satellite image datasets including Landsat-8, Sentinel-2, and Cartosat-2s.
arXiv Detail & Related papers (2023-11-29T09:31:31Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
We propose a clustering based supervised learning scheme for point cloud analysis.
Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space.
Our algorithm shows notable improvements on famous point cloud segmentation datasets.
arXiv Detail & Related papers (2023-07-27T03:42:12Z) - Shrinking unit: a Graph Convolution-Based Unit for CNN-like 3D Point
Cloud Feature Extractors [0.0]
We argue that a lack of inspiration from the image domain might be the primary cause of such a gap.
We propose a graph convolution-based unit, dubbed Shrinking unit, that can be stacked vertically and horizontally for the design of CNN-like 3D point cloud feature extractors.
arXiv Detail & Related papers (2022-09-26T15:28:31Z) - MKANet: A Lightweight Network with Sobel Boundary Loss for Efficient
Land-cover Classification of Satellite Remote Sensing Imagery [15.614937709070203]
Land cover classification is a multi-class task to classify each pixel into a certain natural or man-made category of the earth surface.
We present an efficient lightweight semantic segmentation network termed MKANet.
We show that MKANet acquires state-of-the-art accuracy on two land-cover classification datasets and infers 2X faster than other competitive lightweight networks.
arXiv Detail & Related papers (2022-07-28T03:29:08Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-net is a new low-computation two-stage object detection architecture.
It reduces computations by separating objects from background using a very lite first-stage.
Resulting image proposals are then processed in the second-stage by a highly accurate model.
arXiv Detail & Related papers (2021-07-21T12:39:51Z) - An Empirical Method to Quantify the Peripheral Performance Degradation
in Deep Networks [18.808132632482103]
convolutional neural network (CNN) kernels compound with each convolutional layer.
Deeper and deeper networks combined with stride-based down-sampling means that the propagation of this region can end up covering a non-negligable portion of the image.
Our dataset is constructed by inserting objects into high resolution backgrounds, thereby allowing us to crop sub-images which place target objects at specific locations relative to the image border.
By probing the behaviour of Mask R-CNN across a selection of target locations, we see clear patterns of performance degredation near the image boundary, and in particular in the image corners.
arXiv Detail & Related papers (2020-12-04T18:00:47Z) - Single Image Cloud Detection via Multi-Image Fusion [23.641624507709274]
A primary challenge in developing algorithms is the cost of collecting annotated training data.
We demonstrate how recent advances in multi-image fusion can be leveraged to bootstrap single image cloud detection.
We collect a large dataset of Sentinel-2 images along with a per-pixel semantic labelling for land cover.
arXiv Detail & Related papers (2020-07-29T22:52:28Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
Few-shot segmentation aims to learn a segmentation model that can be generalized to novel classes with only a few training images.
With a cross-reference mechanism, our network can better find the co-occurrent objects in the two images.
Experiments on the PASCAL VOC 2012 dataset show that our network achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-03-24T04:55:43Z) - Saliency Enhancement using Gradient Domain Edges Merging [65.90255950853674]
We develop a method to merge the edges with the saliency maps to improve the performance of the saliency.
This leads to our proposed saliency enhancement using edges (SEE) with an average improvement of at least 3.4 times higher on the DUT-OMRON dataset.
The SEE algorithm is split into 2 parts, SEE-Pre for preprocessing and SEE-Post pour postprocessing.
arXiv Detail & Related papers (2020-02-11T14:04:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.