Saliency Enhancement using Gradient Domain Edges Merging
- URL: http://arxiv.org/abs/2002.04380v1
- Date: Tue, 11 Feb 2020 14:04:56 GMT
- Title: Saliency Enhancement using Gradient Domain Edges Merging
- Authors: Dominique Beaini, Sofiane Achiche, Alexandre Duperre, Maxime Raison
- Abstract summary: We develop a method to merge the edges with the saliency maps to improve the performance of the saliency.
This leads to our proposed saliency enhancement using edges (SEE) with an average improvement of at least 3.4 times higher on the DUT-OMRON dataset.
The SEE algorithm is split into 2 parts, SEE-Pre for preprocessing and SEE-Post pour postprocessing.
- Score: 65.90255950853674
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, there has been a rapid progress in solving the binary
problems in computer vision, such as edge detection which finds the boundaries
of an image and salient object detection which finds the important object in an
image. This progress happened thanks to the rise of deep-learning and
convolutional neural networks (CNN) which allow to extract complex and abstract
features. However, edge detection and saliency are still two different fields
and do not interact together, although it is intuitive for a human to detect
salient objects based on its boundaries. Those features are not well merged in
a CNN because edges and surfaces do not intersect since one feature represents
a region while the other represents boundaries between different regions. In
the current work, the main objective is to develop a method to merge the edges
with the saliency maps to improve the performance of the saliency. Hence, we
developed the gradient-domain merging (GDM) which can be used to quickly
combine the image-domain information of salient object detection with the
gradient-domain information of the edge detection. This leads to our proposed
saliency enhancement using edges (SEE) with an average improvement of the
F-measure of at least 3.4 times higher on the DUT-OMRON dataset and 6.6 times
higher on the ECSSD dataset, when compared to competing algorithm such as
denseCRF and BGOF. The SEE algorithm is split into 2 parts, SEE-Pre for
preprocessing and SEE-Post pour postprocessing.
Related papers
- Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - Learning to utilize image second-order derivative information for crisp edge detection [13.848361661516595]
Edge detection is a fundamental task in computer vision.
Recent top-performing edge detection methods tend to generate thick and noisy edge lines.
We propose a second-order derivative-based multi-scale contextual enhancement module (SDMCM) to help the model locate true edge pixels accurately.
We also construct a hybrid focal loss function (HFL) to alleviate the imbalanced distribution issue.
In the end, we propose a U-shape network named LUS-Net which is based on the SDMCM and BRM for edge detection.
arXiv Detail & Related papers (2024-06-09T13:25:02Z) - Edge-Aware Mirror Network for Camouflaged Object Detection [5.032585246295627]
We propose a novel Edge-aware Mirror Network (EAMNet) to model edge detection and camouflaged object segmentation.
EAMNet has a two-branch architecture, where a segmentation-induced edge aggregation module and an edge-induced integrity aggregation module are designed to cross-guide the segmentation branch and edge detection branch.
Experiment results show that EAMNet outperforms existing cutting-edge baselines on three widely used COD datasets.
arXiv Detail & Related papers (2023-07-08T08:14:49Z) - Geometry-Aware Network for Domain Adaptive Semantic Segmentation [64.00345743710653]
We propose a novel Geometry-Aware Network for Domain Adaptation (GANDA) to shrink the domain gaps.
We exploit 3D topology on the point clouds generated from RGB-D images for coordinate-color disentanglement and pseudo-labels refinement in the target domain.
Our model outperforms state-of-the-arts on GTA5->Cityscapes and SYNTHIA->Cityscapes.
arXiv Detail & Related papers (2022-12-02T00:48:44Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
We propose a Graph Convolution based Spatial Propagation Network (GraphCSPN) as a general approach for depth completion.
In this work, we leverage convolution neural networks as well as graph neural networks in a complementary way for geometric representation learning.
Our method achieves the state-of-the-art performance, especially when compared in the case of using only a few propagation steps.
arXiv Detail & Related papers (2022-10-19T17:56:03Z) - Position-Aware Relation Learning for RGB-Thermal Salient Object
Detection [3.115635707192086]
We propose a position-aware relation learning network (PRLNet) for RGB-T SOD based on swin transformer.
PRLNet explores the distance and direction relationships between pixels to strengthen intra-class compactness and inter-class separation.
In addition, we constitute a pure transformer encoder-decoder network to enhance multispectral feature representation for RGB-T SOD.
arXiv Detail & Related papers (2022-09-21T07:34:30Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Boundary-Aware Geometric Encoding for Semantic Segmentation of Point
Clouds [45.270215729464056]
Boundary information plays a significant role in 2D image segmentation, while usually being ignored in 3D point cloud segmentation.
We propose a Boundary Prediction Module (BPM) to predict boundary points.
Based on the predicted boundary, a boundary-aware Geometric.
GEM is designed to encode geometric information and aggregate features with discrimination in a neighborhood.
arXiv Detail & Related papers (2021-01-07T05:38:19Z) - Learning Crisp Edge Detector Using Logical Refinement Network [29.59728791893451]
We propose a novel logical refinement network for crisp edge detection, which is motivated by the logical relationship between segmentation and edge maps.
The network consists of a joint object and edge detection network and a crisp edge refinement network, which predicts more accurate, clearer and thinner high quality binary edge maps.
arXiv Detail & Related papers (2020-07-24T11:12:48Z) - Refined Plane Segmentation for Cuboid-Shaped Objects by Leveraging Edge
Detection [63.942632088208505]
We propose a post-processing algorithm to align the segmented plane masks with edges detected in the image.
This allows us to increase the accuracy of state-of-the-art approaches, while limiting ourselves to cuboid-shaped objects.
arXiv Detail & Related papers (2020-03-28T18:51:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.