論文の概要: Two-hand Global 3D Pose Estimation Using Monocular RGB
- arxiv url: http://arxiv.org/abs/2006.01320v4
- Date: Tue, 25 Aug 2020 09:54:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 07:25:33.010510
- Title: Two-hand Global 3D Pose Estimation Using Monocular RGB
- Title(参考訳): 単眼RGBを用いた二次元グローバル3次元空間推定
- Authors: Fanqing Lin, Connor Wilhelm, Tony Martinez
- Abstract要約: 我々は、単眼のRGB入力画像のみを用いて、両手のグローバルな3D関節位置を推定する難しい課題に取り組む。
本稿では,手の位置を正確に把握する多段階畳み込みニューラルネットワークに基づくパイプラインを提案する。
RGBのみの入力を用いて両手の3Dハンドトラッキングを高精度に行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We tackle the challenging task of estimating global 3D joint locations for
both hands via only monocular RGB input images. We propose a novel multi-stage
convolutional neural network based pipeline that accurately segments and
locates the hands despite occlusion between two hands and complex background
noise and estimates the 2D and 3D canonical joint locations without any depth
information. Global joint locations with respect to the camera origin are
computed using the hand pose estimations and the actual length of the key bone
with a novel projection algorithm. To train the CNNs for this new task, we
introduce a large-scale synthetic 3D hand pose dataset. We demonstrate that our
system outperforms previous works on 3D canonical hand pose estimation
benchmark datasets with RGB-only information. Additionally, we present the
first work that achieves accurate global 3D hand tracking on both hands using
RGB-only inputs and provide extensive quantitative and qualitative evaluation.
- Abstract(参考訳): 単眼のrgb入力画像のみを用いて,両手のグローバルな3d関節位置を推定する課題に挑戦する。
本研究では,2つの手と複雑な背景雑音に拘わらず,手の位置を正確に把握する多段階畳み込みニューラルネットワークを用いたパイプラインを提案し,深度情報のない2次元および3次元標準関節位置を推定する。
カメラの起源に関するグローバルな関節位置は、新しい投影アルゴリズムを用いて手ポーズ推定とキー骨の実際の長さを用いて計算される。
この新しいタスクのためにCNNをトレーニングするために,大規模な合成3Dハンドポーズデータセットを導入する。
提案手法は,rgbのみの情報を用いた3次元正準手ポーズ推定ベンチマークデータセットよりも優れた性能を示す。
また, rgbのみの入力を用いて, 両手の正確な3dハンドトラッキングを実現する最初の研究を行い, 定量的, 質的評価を行う。
関連論文リスト
- WiLoR: End-to-end 3D Hand Localization and Reconstruction in-the-wild [53.288327629960364]
野生における効率的なマルチハンド再構築のためのデータ駆動パイプラインを提案する。
提案するパイプラインは、リアルタイム完全畳み込みハンドローカライゼーションと、高忠実度トランスフォーマーに基づく3Dハンド再構成モデルという2つのコンポーネントで構成されている。
提案手法は, 一般的な2次元および3次元のベンチマークにおいて, 効率と精度の両方において, 従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-09-18T18:46:51Z) - Neural Voting Field for Camera-Space 3D Hand Pose Estimation [106.34750803910714]
3次元暗黙表現に基づく1枚のRGB画像からカメラ空間の3Dハンドポーズ推定のための統一的なフレームワークを提案する。
本稿では,カメラフラストラムにおける高密度3次元ポイントワイド投票により,カメラ空間の3次元ハンドポーズを推定する,新しい3次元高密度回帰手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T16:51:34Z) - Ego2HandsPose: A Dataset for Egocentric Two-hand 3D Global Pose
Estimation [0.0]
Ego2HandsPoseは、目に見えないドメインでカラーベースの2Dトラッキングを可能にする最初のデータセットである。
本研究では,1)1つの画像を用いた3次元手ポーズアノテーションの実現,2)2次元手ポーズから3次元手ポーズへの自動変換,3)時間的整合性を伴う高精度な両手トラッキングを実現するためのパラメトリックフィッティングアルゴリズムの開発を行う。
論文 参考訳(メタデータ) (2022-06-10T07:50:45Z) - HandFoldingNet: A 3D Hand Pose Estimation Network Using
Multiscale-Feature Guided Folding of a 2D Hand Skeleton [4.1954750695245835]
本稿では,高精度かつ効率的なポーズ推定器であるHandFoldingNetを提案する。
提案モデルでは, 折り畳み型デコーダを用いて, 与えられた2次元手骨を対応する関節座標に折り畳む。
実験結果から,提案モデルが既存の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-08-12T05:52:44Z) - RGB2Hands: Real-Time Tracking of 3D Hand Interactions from Monocular RGB
Video [76.86512780916827]
本稿では,1台のRGBカメラによる骨格ポーズのモーションキャプチャと手の表面形状をリアルタイムに計測する手法を提案する。
RGBデータの本質的な深さの曖昧さに対処するために,我々は新しいマルチタスクCNNを提案する。
RGBの片手追跡と3D再構築パイプラインの個々のコンポーネントを実験的に検証した。
論文 参考訳(メタデータ) (2021-06-22T12:53:56Z) - HandsFormer: Keypoint Transformer for Monocular 3D Pose Estimation
ofHands and Object in Interaction [33.661745138578596]
単色画像からの密接な相互作用で両手の3次元ポーズを推定する頑健で正確な手法を提案する。
本手法は, 両手関節の電位2d位置をヒートマップの極値として抽出することから始まる。
これらの位置の外観と空間エンコーディングを変圧器への入力として使用し、注意メカニズムを利用して関節の正しい構成を整理します。
論文 参考訳(メタデータ) (2021-04-29T20:19:20Z) - MM-Hand: 3D-Aware Multi-Modal Guided Hand Generative Network for 3D Hand
Pose Synthesis [81.40640219844197]
モノラルなRGB画像から3Dハンドポーズを推定することは重要だが難しい。
解決策は、高精度な3D手指キーポイントアノテーションを用いた大規模RGB手指画像のトレーニングである。
我々は,現実的で多様な3次元ポーズ保存ハンドイメージを合成する学習ベースアプローチを開発した。
論文 参考訳(メタデータ) (2020-10-02T18:27:34Z) - HandVoxNet: Deep Voxel-Based Network for 3D Hand Shape and Pose
Estimation from a Single Depth Map [72.93634777578336]
弱教師付き方式で3次元畳み込みを訓練した新しいアーキテクチャを提案する。
提案されたアプローチは、SynHand5Mデータセット上で、アートの状態を47.8%改善する。
我々の手法は、NYUとBigHand2.2Mデータセットで視覚的により合理的で現実的な手形を生成する。
論文 参考訳(メタデータ) (2020-04-03T14:27:16Z) - Measuring Generalisation to Unseen Viewpoints, Articulations, Shapes and
Objects for 3D Hand Pose Estimation under Hand-Object Interaction [137.28465645405655]
HANDS'19は、現在の3Dハンドポーズ推定器(HPE)がトレーニングセットのポーズを補間し、外挿する能力を評価するための課題である。
本研究では,最先端手法の精度が低下し,トレーニングセットから外れたポーズでほとんど失敗することを示す。
論文 参考訳(メタデータ) (2020-03-30T19:28:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。