Combining Reinforcement Learning and Constraint Programming for
Combinatorial Optimization
- URL: http://arxiv.org/abs/2006.01610v1
- Date: Tue, 2 Jun 2020 13:54:27 GMT
- Title: Combining Reinforcement Learning and Constraint Programming for
Combinatorial Optimization
- Authors: Quentin Cappart and Thierry Moisan and Louis-Martin Rousseau and
Isabeau Pr\'emont-Schwarz and Andre Cire
- Abstract summary: The goal is to find an optimal solution among a finite set of possibilities.
Deep reinforcement learning (DRL) has shown its promise for solving NP-hard optimization problems.
constraint programming (CP) is a generic tool to solve optimization problems.
In this work, we propose a general and hybrid approach, based on DRL and CP, for solving optimization problems.
- Score: 5.669790037378094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Combinatorial optimization has found applications in numerous fields, from
aerospace to transportation planning and economics. The goal is to find an
optimal solution among a finite set of possibilities. The well-known challenge
one faces with combinatorial optimization is the state-space explosion problem:
the number of possibilities grows exponentially with the problem size, which
makes solving intractable for large problems. In the last years, deep
reinforcement learning (DRL) has shown its promise for designing good
heuristics dedicated to solve NP-hard combinatorial optimization problems.
However, current approaches have two shortcomings: (1) they mainly focus on the
standard travelling salesman problem and they cannot be easily extended to
other problems, and (2) they only provide an approximate solution with no
systematic ways to improve it or to prove optimality. In another context,
constraint programming (CP) is a generic tool to solve combinatorial
optimization problems. Based on a complete search procedure, it will always
find the optimal solution if we allow an execution time large enough. A
critical design choice, that makes CP non-trivial to use in practice, is the
branching decision, directing how the search space is explored. In this work,
we propose a general and hybrid approach, based on DRL and CP, for solving
combinatorial optimization problems. The core of our approach is based on a
dynamic programming formulation, that acts as a bridge between both techniques.
We experimentally show that our solver is efficient to solve two challenging
problems: the traveling salesman problem with time windows, and the 4-moments
portfolio optimization problem. Results obtained show that the framework
introduced outperforms the stand-alone RL and CP solutions, while being
competitive with industrial solvers.
Related papers
- Learning Multiple Initial Solutions to Optimization Problems [52.9380464408756]
Sequentially solving similar optimization problems under strict runtime constraints is essential for many applications.
We propose learning to predict emphmultiple diverse initial solutions given parameters that define the problem instance.
We find significant and consistent improvement with our method across all evaluation settings and demonstrate that it efficiently scales with the number of initial solutions required.
arXiv Detail & Related papers (2024-11-04T15:17:19Z) - Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
with GFlowNets [86.43523688236077]
Combinatorial optimization (CO) problems are often NP-hard and out of reach for exact algorithms.
GFlowNets have emerged as a powerful machinery to efficiently sample from composite unnormalized densities sequentially.
In this paper, we design Markov decision processes (MDPs) for different problems and propose to train conditional GFlowNets to sample from the solution space.
arXiv Detail & Related papers (2023-05-26T15:13:09Z) - A Novel Approach for Auto-Formulation of Optimization Problems [66.94228200699997]
In the Natural Language for Optimization (NL4Opt) NeurIPS 2022 competition, competitors focus on improving the accessibility and usability of optimization solvers.
In this paper, we present the solution of our team.
Our proposed methods have achieved the F1-score of 0.931 in subtask 1 and the accuracy of 0.867 in subtask 2, which won the fourth and third places respectively in this competition.
arXiv Detail & Related papers (2023-02-09T13:57:06Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
Quantum and quantum-inspired optimisation algorithms have shown promising performance when applied to academic benchmarks as well as real-world problems.
However, QUBO solvers are single objective solvers. To make them more efficient at solving problems with multiple objectives, a decision on how to convert such multi-objective problems to single-objective problems need to be made.
arXiv Detail & Related papers (2022-10-20T14:54:37Z) - The Machine Learning for Combinatorial Optimization Competition (ML4CO):
Results and Insights [59.93939636422896]
The ML4CO aims at improving state-of-the-art optimization solvers by replacing key components.
The competition featured three challenging tasks: finding the best feasible solution, producing the tightest optimality certificate, and giving an appropriate routing configuration.
arXiv Detail & Related papers (2022-03-04T17:06:00Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Learning for Robust Combinatorial Optimization: Algorithm and
Application [26.990988571097827]
Learning to optimize (L2O) has emerged as a promising approach to solving optimization problems by exploiting the strong prediction power of neural networks.
In this paper, we propose a novel learning-based optimization, called LRCO, which quickly outputs a robust solution in the presence of uncertain context.
Our results highlight that LRCO can greatly reduce the worst-case cost and runtime, while having a very low complexity.
arXiv Detail & Related papers (2021-12-20T07:58:50Z) - Comparing Heuristics, Constraint Optimization, and Reinforcement
Learning for an Industrial 2D Packing Problem [58.720142291102135]
Cutting and Packing problems are occurring in different industries with a direct impact on the revenue of businesses.
Machine learning is increasingly used for solving such problems.
arXiv Detail & Related papers (2021-10-27T15:47:47Z) - Learning Primal Heuristics for Mixed Integer Programs [5.766851255770718]
We investigate whether effective primals can be automatically learned via machine learning.
We propose a new method to represent an optimization problem as a graph, and train a Graph Conal Network on solved problem instances with known optimal solutions.
The prediction of variable solutions is then leveraged by a novel configuration of the B&B method, Probabilistic Branching with guided Depth-first Search.
arXiv Detail & Related papers (2021-07-02T06:46:23Z) - A Hybrid Framework Using a QUBO Solver For Permutation-Based
Combinatorial Optimization [5.460573052311485]
We propose a hybrid framework to solve large-scale permutation-based problems using a high-performance quadratic unconstrained binary optimization solver.
We propose techniques to overcome the challenges in using a QUBO solver that typically comes with limited numbers of bits.
arXiv Detail & Related papers (2020-09-27T07:15:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.