A Hybrid Framework Using a QUBO Solver For Permutation-Based
Combinatorial Optimization
- URL: http://arxiv.org/abs/2009.12767v2
- Date: Tue, 6 Jul 2021 13:55:43 GMT
- Title: A Hybrid Framework Using a QUBO Solver For Permutation-Based
Combinatorial Optimization
- Authors: Siong Thye Goh, Sabrish Gopalakrishnan, Jianyuan Bo, Hoong Chuin Lau
- Abstract summary: We propose a hybrid framework to solve large-scale permutation-based problems using a high-performance quadratic unconstrained binary optimization solver.
We propose techniques to overcome the challenges in using a QUBO solver that typically comes with limited numbers of bits.
- Score: 5.460573052311485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a hybrid framework to solve large-scale
permutation-based combinatorial problems effectively using a high-performance
quadratic unconstrained binary optimization (QUBO) solver. To do so,
transformations are required to change a constrained optimization model to an
unconstrained model that involves parameter tuning. We propose techniques to
overcome the challenges in using a QUBO solver that typically comes with
limited numbers of bits. First, to smooth the energy landscape, we reduce the
magnitudes of the input without compromising optimality. We propose a machine
learning approach to tune the parameters for good performance effectively. To
handle possible infeasibility, we introduce a polynomial-time projection
algorithm. Finally, to solve large-scale problems, we introduce a
divide-and-conquer approach that calls the QUBO solver repeatedly on small
sub-problems. We tested our approach on provably hard Euclidean Traveling
Salesman (E-TSP) instances and Flow Shop Problem (FSP). Optimality gap that is
less than $10\%$ and $11\%$ are obtained respectively compared to the
best-known approach.
Related papers
- Optimized QUBO formulation methods for quantum computing [0.4999814847776097]
We show how to apply our techniques in case of an NP-hard optimization problem inspired by a real-world financial scenario.
We follow by submitting instances of this problem to two D-wave quantum annealers, comparing the performances of our novel approach with the standard methods used in these scenarios.
arXiv Detail & Related papers (2024-06-11T19:59:05Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - RIGA: A Regret-Based Interactive Genetic Algorithm [14.388696798649658]
We propose an interactive genetic algorithm for solving multi-objective optimization problems under preference imprecision.
Our algorithm, called RIGA, can be applied to any multi-objective optimization problem provided that the aggregation function is linear in its parameters.
For several performance indicators (computation times, gap to optimality and number of queries), RIGA obtains better results than state-of-the-art algorithms.
arXiv Detail & Related papers (2023-11-10T13:56:15Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
Quantum and quantum-inspired optimisation algorithms have shown promising performance when applied to academic benchmarks as well as real-world problems.
However, QUBO solvers are single objective solvers. To make them more efficient at solving problems with multiple objectives, a decision on how to convert such multi-objective problems to single-objective problems need to be made.
arXiv Detail & Related papers (2022-10-20T14:54:37Z) - Learning Primal Heuristics for Mixed Integer Programs [5.766851255770718]
We investigate whether effective primals can be automatically learned via machine learning.
We propose a new method to represent an optimization problem as a graph, and train a Graph Conal Network on solved problem instances with known optimal solutions.
The prediction of variable solutions is then leveraged by a novel configuration of the B&B method, Probabilistic Branching with guided Depth-first Search.
arXiv Detail & Related papers (2021-07-02T06:46:23Z) - QROSS: QUBO Relaxation Parameter Optimisation via Learning Solver
Surrogates [14.905085636501438]
We build surrogate models of QUBO solvers via learning from solver data on a collection of instances of a problem.
In this way, we are able capture the common structure of the instances and their interactions with the solver, and produce good choices of penalty parameters.
QROSS is shown to generalise well to out-of-distribution datasets and different types of QUBO solvers.
arXiv Detail & Related papers (2021-03-19T09:06:12Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
The predict+optimize problem combines machine learning ofproblem coefficients with a optimization prob-lem that uses the predicted coefficients.
We show how to directlyexpress the loss of the optimization problem in terms of thepredicted coefficients as a piece-wise linear function.
We propose a novel divide and algorithm to tackle optimization problems without this restriction and predict itscoefficients using the optimization loss.
arXiv Detail & Related papers (2020-12-04T00:26:56Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.