Unsupervised Deep Learning for Optimizing Wireless Systems with
Instantaneous and Statistic Constraints
- URL: http://arxiv.org/abs/2006.01641v2
- Date: Tue, 11 Aug 2020 09:23:24 GMT
- Title: Unsupervised Deep Learning for Optimizing Wireless Systems with
Instantaneous and Statistic Constraints
- Authors: Chengjian Sun, Changyang She, Chenyang Yang
- Abstract summary: We establish a unified framework of using unsupervised deep learning to solve both kinds of problems with both instantaneous and statistic constraints.
We show that unsupervised learning outperforms supervised learning in terms of violation probability and approximation accuracy of the optimal policy.
- Score: 29.823814915538463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) have been introduced for designing wireless
policies by approximating the mappings from environmental parameters to
solutions of optimization problems. Considering that labeled training samples
are hard to obtain, unsupervised deep learning has been proposed to solve
functional optimization problems with statistical constraints recently.
However, most existing problems in wireless communications are variable
optimizations, and many problems are with instantaneous constraints. In this
paper, we establish a unified framework of using unsupervised deep learning to
solve both kinds of problems with both instantaneous and statistic constraints.
For a constrained variable optimization, we first convert it into an equivalent
functional optimization problem with instantaneous constraints. Then, to ensure
the instantaneous constraints in the functional optimization problems, we use
DNN to approximate the Lagrange multiplier functions, which is trained together
with a DNN to approximate the policy. We take two resource allocation problems
in ultra-reliable and low-latency communications as examples to illustrate how
to guarantee the complex and stringent quality-of-service (QoS) constraints
with the framework. Simulation results show that unsupervised learning
outperforms supervised learning in terms of QoS violation probability and
approximation accuracy of the optimal policy, and can converge rapidly with
pre-training.
Related papers
- Optimization Proxies using Limited Labeled Data and Training Time -- A Semi-Supervised Bayesian Neural Network Approach [2.943640991628177]
Constrained optimization problems arise in various engineering system operations such as inventory management electric power grids.
This work introduces a learning scheme using Bayesian Networks (BNNs) to solve constrained optimization problems under limited data and restricted model times.
We show that the proposed learning method outperforms conventional BNN and deep neural network (DNN) architectures.
arXiv Detail & Related papers (2024-10-04T02:10:20Z) - Self-Supervised Learning of Iterative Solvers for Constrained Optimization [0.0]
We propose a learning-based iterative solver for constrained optimization.
It can obtain very fast and accurate solutions by customizing the solver to a specific parametric optimization problem.
A novel loss function based on the Karush-Kuhn-Tucker conditions of optimality is introduced, enabling fully self-supervised training of both neural networks.
arXiv Detail & Related papers (2024-09-12T14:17:23Z) - WANCO: Weak Adversarial Networks for Constrained Optimization problems [5.257895611010853]
We first transform minimax problems into minimax problems using the augmented Lagrangian method.
We then use two (or several) deep neural networks to represent the primal and dual variables respectively.
The parameters in the neural networks are then trained by an adversarial process.
arXiv Detail & Related papers (2024-07-04T05:37:48Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
Sequential Decision Making under Uncertainty (SDMU) is ubiquitous in many domains such as energy, finance, and supply chains.
Some SDMU are naturally modeled as Multistage Problems (MSPs) but the resulting optimizations are notoriously challenging from a computational standpoint.
This paper introduces a novel approach Two-Stage General Decision Rules (TS-GDR) to generalize the policy space beyond linear functions.
The effectiveness of TS-GDR is demonstrated through an instantiation using Deep Recurrent Neural Networks named Two-Stage Deep Decision Rules (TS-LDR)
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - Unsupervised Optimal Power Flow Using Graph Neural Networks [172.33624307594158]
We use a graph neural network to learn a nonlinear parametrization between the power demanded and the corresponding allocation.
We show through simulations that the use of GNNs in this unsupervised learning context leads to solutions comparable to standard solvers.
arXiv Detail & Related papers (2022-10-17T17:30:09Z) - Polynomial Optimization: Enhancing RLT relaxations with Conic
Constraints [0.0]
Conic optimization has emerged as a powerful tool for designing tractable and guaranteed algorithms for non-scale problems.
We investigate the strengthening of the RLT relaxations of optimization problems through the addition of nine different types of constraints.
We show how to design these variants and their performance with respect to each other and with respect to the standard RLT relaxations.
arXiv Detail & Related papers (2022-08-11T02:13:04Z) - Local AdaGrad-Type Algorithm for Stochastic Convex-Concave Minimax
Problems [80.46370778277186]
Large scale convex-concave minimax problems arise in numerous applications, including game theory, robust training, and training of generative adversarial networks.
We develop a communication-efficient distributed extragrad algorithm, LocalAdaSient, with an adaptive learning rate suitable for solving convex-concave minimax problem in the.
Server model.
We demonstrate its efficacy through several experiments in both the homogeneous and heterogeneous settings.
arXiv Detail & Related papers (2021-06-18T09:42:05Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
We study the predict-then-optimize framework in the context of sequential decision problems (formulated as MDPs) solved via reinforcement learning.
Two significant computational challenges arise in applying decision-focused learning to MDPs.
arXiv Detail & Related papers (2021-06-06T23:53:31Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
Resource allocation and transceivers in wireless networks are usually designed by solving optimization problems.
In this article, we introduce unsupervised and reinforced-unsupervised learning frameworks for solving both variable and functional optimization problems.
arXiv Detail & Related papers (2020-01-03T11:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.